Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Approximation of bi-variate functions : singular value decomposition versus sparse grids
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 2359745
Author(s) Griebel, Michael; Harbrecht, Helmut
Author(s) at UniBasel Harbrecht, Helmut
Year 2014
Title Approximation of bi-variate functions : singular value decomposition versus sparse grids
Journal IMA journal of numerical analysis
Volume 34
Number 1
Pages / Article-Number 28-54
Keywords singular value decomposition, sparse grids, complexity
Abstract

We compare the cost complexities of two approximation schemes for functions $f\in H^p(\Omega_1\times \Omega_2)$ which live on the product domain $\Omega_1\times\Omega_2$ of sufficiently smooth domains $\Omega_1\subset\mathbb{R}^{n_1}$ and $\Omega_2\subset\mathbb{R}^{n_2}$, namely the singular value / Karhunen-L\`oeve decomposition and the sparse grid representation. Here we assume that suitable finite element methods with associated {\em fixed} order $r$ of accuracy are given on the domains $\Omega_1$ and $\Omega_2$. Then, the sparse grid approximation essentially needs only $\mathcal{O}(\varepsilon^{-q})$ with $q=\frac{\max\{n_1,n_2\}}{r}$ unknowns to reach a prescribed accuracy $\varepsilon$ provided that the smoothness of $f$ satisfies $p\ge r\frac{n_1+n_2}{\max\{n_1,n_2\}}$, which is an almost optimal rate. The singular value decomposition produces this rate only if $f$ is analytical since otherwise the decay of the singular values is not fast enough. If $p<r\frac{n_1+n_2}{\max\{n_1,n_2\}}$, then the sparse grid approach gives essentially the rate $\mathcal{O}(\varepsilon^{-q})$ with $q=\frac{n_1+n_2}{p}$ while, for the singular value decomposition, we can only prove the rate $\mathcal{O}(\varepsilon^{-q})$ with $q=\frac{2\min\{r,p\}\min\{n_1,n_2\}+2p\max\{n_1,n_2\}}{(2p-\min\{n_1,n_2\})\min\{r,p\}}$. We derive the resulting complexities, compare the two approaches and present numerical results which demonstrate that these rates are also achieved in numerical practice.

$p
\frac{n_1+n_2}{\max\{n_1,n_2\}}$, then the sparse
grid approach gives essentially the rate $\mathcal{O}
(\varepsilon^{-q})$ with $q=\frac{n_1+n_2}{p}$ while, for the
singular value decomposition, we can only prove the rate
$\mathcal{O}(\varepsilon^{-q})$ with $q=\frac{2\min\{r,p\}\min\{n_1,n_2\}
+2p\max\{n_1,n_2\}}{(2p-\min\{n_1,n_2\})\min\{r,p\}}$.
We derive the resulting complexities, compare the two
approaches and present numerical results which
demonstrate that these rates are also achieved
in numerical practi
Publisher Oxford University Press
ISSN/ISBN 0272-4979
edoc-URL http://edoc.unibas.ch/dok/A6223408
Full Text on edoc No
Digital Object Identifier DOI 10.1093/imanum/drs047
ISI-Number WOS:000330833000002
Document type (ISI) Article
 
   

MCSS v5.8 PRO. 0.533 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
26/04/2024