Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Enhancement of cellular memory by reducing stochastic transitions
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 961804
Author(s) Acar, Murat; Becskei, Attila; van Oudenaarden, Alexander
Author(s) at UniBasel Becskei, Attila
Year 2005
Title Enhancement of cellular memory by reducing stochastic transitions
Journal Nature
Volume 435
Number 7039
Pages / Article-Number 228-32
Mesh terms Cell Differentiation; Feedback, Physiological, drug effects; Galactose, pharmacology; Gene Expression Regulation, Developmental, drug effects; Gene Expression Regulation, Fungal, drug effects; Genes, Reporter, genetics; Models, Biological; Monosaccharide Transport Proteins, metabolism; Phenotype; Promoter Regions, Genetic, genetics; Repressor Proteins, metabolism; Saccharomyces cerevisiae, metabolism; Saccharomyces cerevisiae Proteins, metabolism; Signal Transduction, drug effects; Stochastic Processes; Transcription Factors, metabolism
Abstract On induction of cell differentiation, distinct cell phenotypes are encoded by complex genetic networks. These networks can prevent the reversion of established phenotypes even in the presence of significant fluctuations. Here we explore the key parameters that determine the stability of cellular memory by using the yeast galactose-signalling network as a model system. This network contains multiple nested feedback loops. Of the two positive feedback loops, only the loop mediated by the cytoplasmic signal transducer Gal3p is able to generate two stable expression states with a persistent memory of previous galactose consumption states. The parallel loop mediated by the galactose transporter Gal2p only increases the expression difference between the two states. A negative feedback through the inhibitor Gal80p reduces the strength of the core positive feedback. Despite this, a constitutive increase in the Gal80p concentration tunes the system from having destabilized memory to having persistent memory. A model reveals that fluctuations are trapped more efficiently at higher Gal80p concentrations. Indeed, the rate at which single cells randomly switch back and forth between expression states was reduced. These observations provide a quantitative understanding of the stability and reversibility of cellular differentiation states.
Publisher Macmillan
ISSN/ISBN 0028-0836 ; 1476-4687
edoc-URL http://edoc.unibas.ch/46413/
Full Text on edoc No
Digital Object Identifier DOI 10.1038/nature03524
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/15889097
ISI-Number WOS:000229021100046
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.529 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
01/05/2024