Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
From neural stem cells to neural circuit
Third-party funded project
Project title From neural stem cells to neural circuit
Principal Investigator(s) Reichert, Heinrich
Organisation / Research unit Departement Biozentrum / Molecular Zoology (Reichert)
Project start 01.04.2009
Probable end 31.03.2012
Status Completed
Abstract

The vast arrays of different neural cell types that characterize the complex circuits of the brain are generated by neural stem cells.  During brain development, these neural stem cells produce defined sets of neural progeny composed of specific neural cell types which interconnect to form functional circuitry.  Understanding the molecular mechanisms that underlie this process and give rise to the astonishing number and diversity of precisely defined cell types in the brain is one of the most challenging problems in biology.

     In the past two decades, significant progress has been made in understanding the mechanisms underlying specification, polarization and division control in neural stem cells, notably in the neurogenetic model system Drosophila.  In Drosophila, the neural stem cells, called neuroblasts, are similar to vertebrate neural stem cells in their ability to self-renew and to produce many different types of neurons and glial cells.  Recent work has shown that the numerous cell types that make up the central brain of Drosophila derive from a set of approximately 100 neuroblast pairs, each of which can be individually identified, and each of which generates its own lineage-specific unit of neural progeny.  However, how this limited number of neuroblasts can generate the enormous number of neural cell types that make up adult brain circuitry is currently poorly understood. 

     The overall goal of the research outlined here is to analyse the developmental mechanisms by which neuroblasts generate the lineage-specific units of the adult brain and specify the number and diversity of cell types in each of these units through a lineage-based molecular genetic dissection.  This proposal consists of three research projects all of which incorporate the powerful genetic methods made possible by GAL4/UAS and MARCM technologies.  The first project is an analysis of the role of neuroblast-derived intermediate progenitors in generating neuronal and glial cell type diversity in specific lineages.  For this, we will capitalize on our discovery of a novel mode of neurogenesis by which identified protocerebral neuroblasts increase their progeny number and diversity through transit amplifying progenitors.  We will analyze the roles of these intermediate progenitors in postembryonic gliogenesis, in the transition from gliogenesis to neurogenesis, and in the generation of neural cell types in the central complex, a major neuropil center in the brain. The second project is an investigation of the role of early patterning genes that are re-expressed in postembryonic brain development and control neuroblast lineage-specific specification of neural cell types.  Here we will focus on the role of the cephalic gap gene empty spiracles in controlling the neuroanatomical features of interneurons in a set of deutocerebral neuroblast lineages.  Moreover, we will investigate the expression and function of the Hox gene labial in postembryonic development of the adult-specific neurons in the tritocerebrum.  The third project is a characterization of the role of programmed cell death in sculpting lineage- and sublineage-specific neural cell types and in determining final neuronal numbers in the adult brain.  In this part we will study the role of programmed cell death in regulation of cell type diversity through differential elimination of specific neuroblast hemilineages.  Moreover, we will analyze the cellular and molecular basis of a remarkably massive cell death process that affects the lineages which generate the columnar cell system of the central complex.

     The planned studies should result in a number of significant advances in our understanding of the generation and specification of neural cell types in the developing brain.  First, we should attain a better understanding of how primary and intermediate progenitors amplify number and diversity of neural cells in the fly brain.  This will be important for understanding similar neural stem cell-dependent processes in mammalian brain development.  Second, this work should advance our understanding of how lineage-dependent neuronal ensembles contribute to the formation of complex brain circuitry, and also identify and characterize key developmental control genes that act in this process.  Third, we should obtain insight into the mechanisms by which programmed cell death influences both the number and the types of adult-specific neural cells that constitute the circuits of the mature brain. 

Keywords brain development, Drosophila, neural stem cells, intermediate progenitors, apoptosis, Hox, labial
Financed by Swiss National Science Foundation (SNSF)

Published results ()

  ID Autor(en) Titel ISSN / ISBN Erschienen in Art der Publikation
84590  Kumar, Abhilasha; Bello, Bruno; Reichert, Heinrich  Lineage-specific cell death in postembryonic brain development of Drosophila  0950-1991  Development  Publication: JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift) 
84591  Kumar, Abhilasha; Fung, S; Lichtneckert, Robert; Reichert, Heinrich; Hartenstein, Volker  Arborization pattern of engrailed-positive neural lineages reveal neuromere boundaries in the Drosophila brain neuropil  0021-9967  Journal of comparative neurology  Publication: JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift) 
84592  Blanco, Jorge; Seimiya, Makiko; Pauli, Tobias; Reichert, Heinrich; Gehring, Walter J  Wingless and Hedgehog signaling pathways regulate orthodenticle and eyes absent during ocelli development in Drosophila.  1095-564X  Developmental biology  Publication: JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift) 
84594  Reichert, Heinrich  Evolutionary conservation of mechanisms for neural regionalization, proliferation and interconnection in brain development  1744-957X  Biology letters  Publication: JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift) 
119577  Izergina, Natalya; Balmer, Jasmin; Bello, Bruno; Reichert, Heinrich  Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain  1749-8104  Neural development  Publication: JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift) 
490910  Reichert, Heinrich; Bello, Bruno  Hox genes and brain development in Drosophila  0065-2598  Advances in experimental medicine and biology  Publication: JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift) 
490912  Pereanu, Wayne; Kumar, Abilasha; Jennett, Arnim; Reichert, Heinrich; Hartenstein, Volker  Development-based compartmentalization of the Drosophila central brain  0021-9967  The Journal of comparative neurology  Publication: JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift) 
490914  Hartmann, Beate; Müller, Martin; Hislop, Nikki R; Roth, Bettina; Tomljenovic, Lucija; Miller, David J; Reichert, Heinrich  Coral emx-Am can substitute for Drosophila empty spiracles function in head, but not brain development  1095-564X  Developmental biology  Publication: JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift) 
749182  Reichert, Heinrich  Drosophila neural stem cells : cell cycle control of self-renewal, differentiation, and termination in brain development  0080-1844  Results and problems in cell differentiation  Publication: JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift) 
749184  Colonques, J.; Ceron, J.; Reichert, H.; Tejedor, F. J.  A Transient Expression of Prospero Promotes Cell Cycle Exit of Drosophila Postembryonic Neurons through the Regulation of Dacapo  1932-6203  PLoS ONE  Publication: JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift) 
749185  Piraino, Stefano; Zega, Giuliana; Di Benedetto, Cristiano; Leone, Antonella; Dell'Anna, Alessandro; Pennati, Roberta; Carnevali, Daniela Candia; Schmid, Volker; Reichert, Heinrich  Complex neural architecture in the diploblastic larva of Clava multicornis (Hydrozoa, Cnidaria)  0021-9967  The Journal of comparative neurology  Publication: JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift) 
749186  Boyan, G. S.; Reichert, H.  Mechanisms for complexity in the brain : generating the insect central complex  0166-2236 ; 1878-108X  Trends in Neurosciences  Publication: JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift) 

Cooperations ()

  ID Kreditinhaber Kooperationspartner Institution Laufzeit - von Laufzeit - bis
427080  Reichert, Heinrich  Hartenstein, Volker, Professor  UCLA  01.04.2009  31.03.2015 
951823  Reichert, Heinrich  Piraino, Stefano, Professor  Universita del Salento  01.02.2010  24.02.2011 
951826  Reichert, Heinrich  Tejedor, Francisco, Professor  Instituto de Neurociencias Alicante  01.04.2009  01.04.2011 
   

MCSS v5.8 PRO. 0.772 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
30/04/2024