Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Automatic Ascending Aorta Detection in CTA Datasets
ConferencePaper (Artikel, die in Tagungsbänden erschienen sind)
 
ID 69729
Author(s) Saur, Stefan C.; Kühnel, Caroline; Boskamp, Tobias; Székely, Gábor; Cattin, Philippe
Author(s) at UniBasel Cattin, Philippe Claude
Year 2008
Title Automatic Ascending Aorta Detection in CTA Datasets
Editor(s) Tolxdorff, Thomas; Braun, Jürgen; Deserno, Thomas M.; Horsch, Alexander; Handels, Heinz; Meinzer, Hans-Peter
Book title (Conference Proceedings) Bildverarbeitung für die Medizin 2008 : Algorithmen, Systeme, Anwendungen ; Proceedings des Workshops vom 6. bis 8. April 2008 in Berlin
Place of Conference Berlin
Publisher Springer
Place of Publication Berlin
Pages 323-327
ISSN/ISBN 978-3-540-78639-9 ; 978-3-540-78640-5
Abstract The assessment of coronary arteries is an essential step when diagnosing coronary heart diseases. There exists a wide range of specialized algorithms for the segmentation of the coronary arteries in Computed Tomography Angiography datasets. In general, these algorithms have to be initialized by manually placing a seed point at the origins of the coronary arteries or within the ascending aorta. In this paper we present a fast and robust algorithm for the automatic detection of the ascending aorta in Computed Tomography Angiography datasets using a two-level threshold ray propagation approach. We further combine this method with an aorta segmentation and coronary artery tree detection algorithm to achieve a fully automatic coronary artery segmentation.
Series title Informatik aktuell
edoc-URL http://edoc.unibas.ch/dok/A6308300
Full Text on edoc No
Digital Object Identifier DOI 10.1007/978-3-540-78640-5_65
Document type (ISI) inproceedings
 
   

MCSS v5.8 PRO. 0.344 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
27/05/2024