Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Does elevated CO2 facilitate naturalization of the non-indigenous Prunus laurocerasus in Swiss temperate forests?
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 54183
Author(s) Hattenschwiler, S; Korner, C
Author(s) at UniBasel Körner, Christian
Year 2003
Title Does elevated CO2 facilitate naturalization of the non-indigenous Prunus laurocerasus in Swiss temperate forests?
Journal Functional ecology
Volume 17
Number 6
Pages / Article-Number 778-785
Keywords broad-leaved evergreen species, global change, Hedera helix, plant species invasion, seedling biomass growth
Abstract 1. An increasing abundance of the non-indigenous evergreen woody plant species Prunus laurocerasus has been observed in the understorey of Swiss temperate forests. We addressed the question whether rising atmospheric CO2 concentration contributes to the success of this species in a comparative test with four co-occurring native species (Ilex aquifolium, Hedera helix, Fraxinus excelsior, Carpinus betulus). 2. We grew plants from germination to the end of the third growing season in open-top chambers exposed to either ambient or two elevated CO2 concentrations (500 and 660 mumol mol(-1)) in a deeply shaded forest understorey (1.2-3.2 3. Species differed greatly in their response to CO2. Biomass growth in Prunus increased by an average of 56 concentrations compared to ambient CO2; there was no significant difference between 500 and 660 mumol mol(-1). In contrast the native Ilex, with the same functional traits, a similar life history and occurring in the same habitat, showed no significant CO2 response. 4. A particularly large and nearly linear CO2 effect on seedling growth was observed in the liana Hedera with 100 longer stems at 660 mumol CO2 mol(-1) compared to ambient CO2. Seedlings of the deciduous tree species Fraxinus produced 43 biomass at elevated CO2 (no significant difference between 500 and 660 mumol mol(-1)), but there was no significant CO2 effect on Carpinus seedlings. 5. Our results indicate that elevated CO2 might contribute to the current spread of Prunus in natural forests. The strong CO2 response in Hedera suggests an increasing rate of tree colonization with rising CO2. Increasing dominance of non-indigenous understorey species and accelerated liana colonization of canopy trees could both have far-ranging consequences for forest community dynamics and composition.
Publisher Blackwell Scientific Publ.
ISSN/ISBN 0269-8463
edoc-URL http://edoc.unibas.ch/dok/A5249098
Full Text on edoc No
Digital Object Identifier DOI 10.1111/j.1365-2435.2003.00785.x
ISI-Number WOS:000187184900008
Document type (ISI) Article
 
   

MCSS v5.8 PRO. 0.368 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
05/05/2024