Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Comparison of model predictions of typhoid conjugate vaccine public health impact and cost-effectiveness
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4662236
Author(s) Burrows, H.; Antillón, M.; Gauld, J. S.; Kim, J. H.; Mogasale, V.; Ryckman, T.; Andrews, J. R.; Lo, N. C.; Pitzer, V. E.
Author(s) at UniBasel Antillon, Marina
Year 2023
Title Comparison of model predictions of typhoid conjugate vaccine public health impact and cost-effectiveness
Journal Vaccine
Volume 41
Number 4
Pages / Article-Number 965-975
Keywords Economic evaluation; Mathematical modeling; Model comparison; Typhoid conjugate vaccines; Typhoid fever; interests/personal relationships which may be considered as potential competing; interests: VEP is a member of the WHO Immunization and Vaccine-related; Implementation Research Advisory Committee (IVIR-AC). All other authors have no; conflicts to declare.
Mesh terms Humans; Public Health; Cost-Benefit Analysis; Vaccines, Conjugate; Typhoid-Paratyphoid Vaccines; Typhoid Fever, prevention & control
Abstract Models are useful to inform policy decisions on typhoid conjugate vaccine (TCV) deployment in endemic settings. However, methodological choices can influence model-predicted outcomes. To provide robust estimates for the potential public health impact of TCVs that account for structural model differences, we compared four dynamic and one static mathematical model of typhoid transmission and vaccine impact. All models were fitted to a common dataset of age-specific typhoid fever cases in Kolkata, India. We evaluated three TCV strategies: no vaccination, routine vaccination at 9 months of age, and routine vaccination at 9 months with a one-time catch-up campaign (ages 9 months to 15 years). The primary outcome was the predicted percent reduction in symptomatic typhoid cases over 10 years after vaccine introduction. For three models with economic analyses (Models A-C), we also compared the incremental cost-effectiveness ratios (ICERs), calculated as the incremental cost (US$) per disability-adjusted life-year (DALY) averted. Routine vaccination was predicted to reduce symptomatic cases by 10-46 % over a 10-year time horizon under an optimistic scenario (95 % initial vaccine efficacy and 19-year mean duration of protection), and by 2-16 % under a pessimistic scenario (82 % initial efficacy and 6-year mean protection). Adding a catch-up campaign predicted a reduction in incidence of 36-90 % and 6-35 % in the optimistic and pessimistic scenarios, respectively. Vaccine impact was predicted to decrease as the relative contribution of chronic carriers to transmission increased. Models A-C all predicted routine vaccination with or without a catch-up campaign to be cost-effective compared to no vaccination, with ICERs varying from $95-789 per DALY averted; two models predicted the ICER of routine vaccination alone to be greater than with the addition of catch-up campaign. Despite differences in model-predicted vaccine impact and cost-effectiveness, routine vaccination plus a catch-up campaign is likely to be impactful and cost-effective in high incidence settings such as Kolkata.
ISSN/ISBN 0264-410X
URL https://doi.org/10.1016/j.vaccine.2022.12.032
edoc-URL https://edoc.unibas.ch/93550/
Full Text on edoc Available
Digital Object Identifier DOI 10.1016/j.vaccine.2022.12.032
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/36586741
ISI-Number MEDLINE:36586741
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.348 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
02/05/2024