Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Wafer-scale epitaxial modulation of quantum dot density
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4657320
Author(s) Bart, N.; Dangel, C.; Zajac, P.; Spitzer, N.; Ritzmann, J.; Schmidt, M.; Babin, H. G.; Schott, R.; Valentin, S. R.; Scholz, S.; Wang, Y.; Uppu, R.; Najer, D.; Loebl, M. C.; Tomm, N.; Javadi, A.; Antoniadis, N. O.; Midolo, L.; Mueller, K.; Warburton, R. J.; Lodahl, P.; Wieck, A. D.; Finley, J. J.; Ludwig, A.
Author(s) at UniBasel Warburton, Richard
Year 2022
Title Wafer-scale epitaxial modulation of quantum dot density
Journal Nature Communications
Volume 13
Number 1
Pages / Article-Number 1633
Abstract Precise control of the properties of semiconductor quantum dots (QDs) is vital for creating novel devices for quantum photonics and advanced opto-electronics. Suitable low QD-densities for single QD devices and experiments are challenging to control during epitaxy and are typically found only in limited regions of the wafer. Here, we demonstrate how conventional molecular beam epitaxy (MBE) can be used to modulate the density of optically active QDs in one- and two- dimensional patterns, while still retaining excellent quality. We find that material thickness gradients during layer-by-layer growth result in surface roughness modulations across the whole wafer. Growth on such templates strongly influences the QD nucleation probability. We obtain density modulations between 1 and 10 QDs/µm2 and periods ranging from several millimeters down to at least a few hundred microns. This method is universal and expected to be applicable to a wide variety of different semiconductor material systems. We apply the method to enable growth of ultra-low noise QDs across an entire 3-inch semiconductor wafer.
Publisher Nature Research
ISSN/ISBN 2041-1723
edoc-URL https://edoc.unibas.ch/92132/
Full Text on edoc Available
Digital Object Identifier DOI 10.1038/s41467-022-29116-8
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/35347120
ISI-Number 000774213100005
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.348 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
03/05/2024