Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
A structural biology community assessment of AlphaFold2 applications
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4653146
Author(s) Akdel, Mehmet; Pires, Douglas E. V.; Pardo, Eduard Porta; Jänes, Jürgen; Zalevsky, Arthur O.; Mészáros, Bálint; Bryant, Patrick; Good, Lydia L.; Laskowski, Roman A.; Pozzati, Gabriele; Shenoy, Aditi; Zhu, Wensi; Kundrotas, Petras; Serra, Victoria Ruiz; Rodrigues, Carlos H. M.; Dunham, Alistair S.; Burke, David; Borkakoti, Neera; Velankar, Sameer; Frost, Adam; Basquin, Jérôme; Lindorff-Larsen, Kresten; Bateman, Alex; Kajava, Andrey V.; Valencia, Alfonso; Ovchinnikov, Sergey; Durairaj, Janani; Ascher, David B.; Thornton, Janet M.; Davey, Norman E.; Stein, Amelie; Elofsson, Arne; Croll, Tristan I.; Beltrao, Pedro
Author(s) at UniBasel Durairaj, Janani
Year 2022
Title A structural biology community assessment of AlphaFold2 applications
Journal Nature Structural and Molecular Biology
Volume 29
Number 11
Pages / Article-Number 1056-1067
Mesh terms Computational Biology, methods; Furylfuramide; Binding Sites; Proteins, chemistry; Databases, Protein; Protein Conformation
Abstract Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods for protein structure predictions have reached the accuracy of experimentally determined models. Although this has been independently verified, the implementation of these methods across structural-biology applications remains to be tested. Here, we evaluate the use of AlphaFold2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modeling of interactions; and modeling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modeled when compared with homology modeling, identifying structural features rarely seen in the Protein Data Bank. AF2-based predictions of protein disorder and complexes surpass dedicated tools, and AF2 models can be used across diverse applications equally well compared with experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life-science research.
Publisher Nature Publishing Group
ISSN/ISBN 1545-9993 ; 1545-9985
edoc-URL https://edoc.unibas.ch/91427/
Full Text on edoc Available
Digital Object Identifier DOI 10.1038/s41594-022-00849-w
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/36344848
ISI-Number WOS:000879692500005
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.359 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
26/04/2024