Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Isotopic signatures of biotic and abiotic N2O production and consumption in the water column of meromictic, ferruginous Lake La Cruz (Spain)
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4652092
Author(s) Tischer, Jana; Zopfi, Jakob; Frey, Claudia; Magyar, Paul M.; Brand, Andreas; Oswald, Kirsten; Jegge, Corinne; Frame, Caitlin H.; Miracle, María R.; Sòria-Perpinyà, Xavier; Vicente, Eduardo; Lehmann, Moritz F.
Author(s) at UniBasel Frey, Claudia
Tischer, Jana
Zopfi, Jakob
Lehmann, Moritz
Year 2022
Title Isotopic signatures of biotic and abiotic N2O production and consumption in the water column of meromictic, ferruginous Lake La Cruz (Spain)
Journal Limnology and Oceanography
Volume 67
Number 8
Pages / Article-Number 1760-1775
Abstract Lakes can be important sources of the potent greenhouse gas nitrous oxide (N 2 O) to the atmosphere, but to what extent abiotic processes may contribute to lacustrine N 2 O production remains uncertain. We assessed pathways of N 2 O production and reduction in the water column of meromictic and iron-rich Lake La Cruz, Spain, including chemodenitrification-induced N 2 O formation via the reaction of reactive nitrogen (N) (e.g., ) with ferrous iron (Fe[II]). In the oxic waters (~8-10 m), N 2 O concentrations above atmospheric equilibrium were associated with comparatively low δ 15 N-N 2 O, high δ, and high N 2 O 15 N-site-preference (SP) values (up to ~29�), suggesting N 2 O production by nitrification. N 2 O concentrations were highest (23-33 nM) near the depth of oxygen depletion (~11-14.5 m), likely due to production by nitrifier denitrification and/or denitrification, as indicated by decreasing SP values (as low as 12�). Further below (~14.5-17 m), N 2 O consumption was indicated by increasing SP values and a δ 18 O-vs.-δ 15 N relationship (1.8-2.9) typical for stand-alone N 2 O reduction. The coupled N-vs.-O isotope signatures thus highlight the spatial, redox-dependent separation of incomplete and complete denitrification. In incubations with sterile-filtered lake water and 15 N-labeled or unlabeled substrate, was reduced by Fe 2+ to N 2 O, even at low nitrite concentrations (5 μ M ). In the water column, the spatial separation of and Fe(II) during our samplings appears to preclude elevated rates of chemodenitrification, but during periods of overlapping and Fe(II) in Lake La Cruz, and potentially in other lakes, its distinct N 2 O δ 18 O-vs.-δ 15 N relationship of ~1 : 1, as experimentally determined, could help to detect it.
ISSN/ISBN 0024-3590 ; 1939-5590
edoc-URL https://edoc.unibas.ch/90660/
Full Text on edoc No
Digital Object Identifier DOI 10.1002/lno.12165
ISI-Number 000809155100001
Document type (ISI) Article
 
   

MCSS v5.8 PRO. 0.349 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
28/04/2024