Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Mechanistic Insight into the Precursor Chemistry of ZrO₂ and HfO₂ Nanocrystals; towards Size-Tunable Syntheses
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4650900
Author(s) Pokratath, Rohan; Van den Eynden, Dietger; Cooper, Susan Rudd; Mathiesen, Jette Katja; Waser, Valérie; Devereux, Mike; Billinge, Simon J. L.; Meuwly, Markus; Jensen, Kirsten M. Ø.; De Roo, Jonathan
Author(s) at UniBasel Devereux, Michael
De Roo, Jonathan
Meuwly, Markus
Pokratath, Rohan
Van den Eynden, Dietger
Year 2022
Title Mechanistic Insight into the Precursor Chemistry of ZrO₂ and HfO₂ Nanocrystals; towards Size-Tunable Syntheses
Journal JACS Au
Volume 2
Number 4
Pages / Article-Number 827-838
Abstract ne can nowadays readily generate monodisperse colloidal nanocrystals, but a retrosynthetic analysis is still not possible since the underlying chemistry is often poorly understood. Here, we provide insight into the reaction mechanism of colloidal zirconia and hafnia nanocrystals synthesized from metal chloride and metal isopropoxide. We identify the active precursor species in the reaction mixture through a combination of nuclear magnetic resonance spectroscopy (NMR), density functional theory (DFT) calculations, and pair distribution function (PDF) analysis. We gain insight into the interaction of the surfactant, tri-n-octylphosphine oxide (TOPO), and the different precursors. Interestingly, we identify a peculiar X-type ligand redistribution mechanism that can be steered by the relative amount of Lewis base (L-type). We further monitor how the reaction mixture decomposes using solution NMR and gas chromatography, and we find that ZrCl4 is formed as a by-product of the reaction, limiting the reaction yield. The reaction proceeds via two competing mechanisms: E1 elimination (dominating) and SN1 substitution (minor). Using this new mechanistic insight, we adapted the synthesis to optimize the yield and gain control over nanocrystal size. These insights will allow the rational design and synthesis of complex oxide nanocrystals.
Publisher American Chemical Society
ISSN/ISBN 2691-3704
edoc-URL https://edoc.unibas.ch/90221/
Full Text on edoc Available
Digital Object Identifier DOI 10.1021/jacsau.1c00568
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/35557760
ISI-Number 000795545200006
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.390 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
04/05/2024