Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Imatinib disassembles the regulatory core of Abelson kinase by binding to its ATP site and not by binding to its myristoyl pocket
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4645172
Author(s) Grzesiek, Stephan; Paladini, Johannes; Habazettl, Judith; Sonti, Rajesh
Author(s) at UniBasel Grzesiek, Stephan
Paladini, Johannes
Habazettl, Judith Maria
Year 2022
Title Imatinib disassembles the regulatory core of Abelson kinase by binding to its ATP site and not by binding to its myristoyl pocket
Journal Magnetic Resonance
Volume 3
Pages / Article-Number 91-99
Abstract It was recently reported (Xie et al., 2022) that the Abelson tyrosine kinase (Abl) ATP-site inhibitor imatinib also binds to Abl's myristoyl binding pocket, which is the target of allosteric Abl inhibitors. This was based on a crystal structure of a truncated Abl kinase domain construct in complex with imatinib bound to the allosteric site as well as further isothermal titration calorimetry (ITC), NMR, and kinase activity data. Although imatinib's affinity for the allosteric site is significantly weaker (10 µ M) than for the ATP site (10 nM), imatinib binding to the allosteric site may disassemble the regulatory core of Abl, thereby stimulating kinase activity, in particular for Abl mutants with reduced imatinib ATP-site affinity. It was argued that the previously observed imatinib-induced opening of the Abl regulatory core (Skora et al., 2013; Sonti et al., 2018) may be caused by the binding of imatinib to the allosteric site and not to the ATP site. We show here that this is not the case but that indeed imatinib binding to the ATP site induces the opening of the regulatory core at nanomolar concentrations. This agrees with findings that other type-II ATP-site inhibitors (nilotinib, ponatinib) disassemble the regulatory core despite demonstrated negligible binding to the allosteric site.
Publisher Copernicus Publications
URL https://mr.copernicus.org/articles/3/91/2022/mr-3-91-2022.html
edoc-URL https://edoc.unibas.ch/88616/
Full Text on edoc Available
Digital Object Identifier DOI 10.5194/mr-3-91-2022
 
   

MCSS v5.8 PRO. 0.326 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
10/05/2024