Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4642537
Author(s) Ko, Tsz Wai; Finkler, Jonas A.; Goedecker, Stefan; Behler, Joerg
Author(s) at UniBasel Goedecker, Stefan
Year 2021
Title General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer
Journal Accounts of Chemical Research
Volume 54
Number 4
Pages / Article-Number 808-817
Abstract The development of first-principles-quality machine learning potentials (MLP) has seen tremendous progress, now enabling computer simulations of complex systems for which sufficiently accurate interatomic potentials have not been available. These advances and the increasing use of MLPs for more and more diverse systems gave rise to new questions regarding their applicability and limitations, which has constantly driven new developments. The resulting MLPs can be classified into several generations depending on the types of systems they are able to describe. First-generation MLPs, as introduced 25 years ago, have been applicable to low-dimensional systems such as small molecules. MLPs became a practical tool for complex systems in chemistry and materials science with the introduction of high-dimensional neural network potentials (HDNNP) in 2007, which represented the first MLP of the second generation. Second-generation MLPs are based on the concept of locality and express the total energy as a sum of environment-dependent atomic energies, which allows applications to very large systems containing thousands of atoms with linearly scaling computational costs. Since second-generation MLPs do not consider interactions beyond the local chemical environments, a natural extension has been the inclusion of long-range interactions without truncation, mainly electrostatics, employing environment-dependent charges establishing the third MLP generation. A variety of second- and, to some extent, also third-generation MLPs are currently the standard methods in ML-based atomistic simulations. In spite of countless successful applications, in recent years it has been recognized that the accuracy of MLPs relying on local atomic energies and charges is still insufficient for systems with long-ranged dependencies in the electronic structure. These can, for instance, result from nonlocal charge transfer or ionization and are omnipresent in many important types of systems and chemical processes such as the protonation and deprotonation of organic and biomolecules, redox reactions, and defects and doping in materials. In all of these situations, small local modifications can change the system globally, resulting in different equilibrium structures, charge distributions, and reactivity. These phenomena cannot be captured by second- and third-generation MLPs. Consequently, the inclusion of nonlocal phenomena has been identified as a next key step in the development of a new fourth generation of MLPs. While a first fourth-generation MLP, the charge equilibration neural network technique (CENT), was introduced in 2015, only very recently have a range of new general-purpose methods applicable to a broad range of physical scenarios emerged. In this Account, we show how fourth-generation HDNNPs can be obtained by combining the concepts of CENT and second-generation HDNNPs. These new MLPs allow for a highly accurate description of systems where nonlocal charge transfer is important.
Publisher American Chemical Society
ISSN/ISBN 0001-4842 ; 1520-4898
URL https://pubs.acs.org/doi/pdf/10.1021/acs.accounts.0c00689
edoc-URL https://edoc.unibas.ch/88083/
Full Text on edoc No
Digital Object Identifier DOI 10.1021/acs.accounts.0c00689
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/33513012
ISI-Number 000620925900007
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.351 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
02/05/2024