Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
TADF: Enabling luminescent copper(i) coordination compounds for light-emitting electrochemical cells
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4641719
Author(s) Housecroft, Catherine E.; Constable, Edwin C.
Author(s) at UniBasel Housecroft, Catherine
Constable, Edwin Charles
Year 2022
Title TADF: Enabling luminescent copper(i) coordination compounds for light-emitting electrochemical cells
Journal Journal of materials chemistry C
Volume 10
Number 12
Pages / Article-Number 4456-4482
Abstract The last decade has seen a surge of interest in the emissive behaviour of copper(i) coordination compounds, both neutral compounds that may have applications in organic light-emitting doides (OLEDs) and copper-based ionic transition metal complexes (Cu-iTMCs) with potential use in light-emitting electrochemical cells (LECs). One of the most exciting features of copper(i) coordination compounds is their possibility to exhibit thermally activated delayed fluorescence (TADF) in which the energy separation of the excited singlet (S-1) and excited triplet (T-1) states is very small, permitting intersystem crossing (ISC) and reverse intersystem crossing (RISC) to occur at room temperature without the requirement for the large spin-orbit coupling inferred by the presence of a heavy metal such as iridium. In this review, we focus mainly in Cu-iTMCs, and illustrate how the field of luminescent compounds and those exhibiting TADF has developed. Copper(i) coordination compounds that class as Cu-iTMCs include those containing four-coordinate [Cu(P boolean AND P)(N boolean AND N)](+) (P boolean AND P = large-bite angle bisphosphane, and N boolean AND N is typically a diimine), [Cu(P)(2)(N boolean AND N)](+) (P = monodentate phosphane ligand), [Cu(P)(tripodal-N-3)](+), [Cu(P)(N boolean AND N)(N)](+) (N = monodentate N-donor ligand), [Cu(P boolean AND P)(N boolean AND S)](+) (N boolean AND S = chelating N,S-donor ligand), [Cu(P boolean AND P)(P boolean AND S)](+) (P boolean AND S = chelating P,S-donor ligand), [Cu(P boolean AND P)(NHC)](+) (NHC = N-heterocyclic carbene) coordination domains, dinuclear complexes with P boolean AND P and N N ligands, three-coordinate [Cu(N boolean AND N)(NHC)](+) and two-coordinate [Cu(N)(NHC)](+) complexes. We pay particular attention to solid-state structural features, e.g. pi-stacking interactions and other inter-ligand interactions, which may impact on photoluminescence quantum yields. Where emissive Cu-iTMCs have been tested in LECs, we detail the device architectures, and this emphasizes differences which make it difficult to compare LEC performances from different investigations.
Publisher Royal Society of Chemistry
ISSN/ISBN 2050-7526 ; 2050-7534
edoc-URL https://edoc.unibas.ch/87879/
Full Text on edoc Available
Digital Object Identifier DOI 10.1039/d1tc04028f
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/35433007
ISI-Number 000708142300001
Document type (ISI) Journal Article, Review
 
   

MCSS v5.8 PRO. 0.598 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
29/04/2024