Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Interaction-Stabilized Topological Magnon Insulator in Ferromagnets
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4636928
Author(s) Mook, Alexander; Plekhanov, Kirill; Klinovaja, Jelena; Loss, Daniel
Author(s) at UniBasel Klinovaja, Jelena
Loss, Daniel
Year 2021
Title Interaction-Stabilized Topological Magnon Insulator in Ferromagnets
Journal Physical Review X
Volume 11
Number 2
Pages / Article-Number 021061
Abstract Condensed matter systems admit topological collective excitations above a trivial ground state, an example being Chern insulators formed by Dirac bosons with a gap at finite energies. However, in contrast to electrons, there is no particle-number conservation law for collective excitations, which gives rise to particle-number-nonconserving many-body interactions whose influence on single-particle topology is an open issue of fundamental interest in the field of topological quantum materials. Taking magnons in ferromagnets as an example, we uncover topological magnon insulators that are stabilized by interactions through opening Chern-insulating gaps in the magnon spectrum. This finding can be traced back to the fact that the particle-number nonconserving interactions break the effective time-reversal symmetry of the harmonic theory. Hence, magnon-magnon interactions are a source of topology that can introduce chiral edge states, whose chirality depends on the magnetization direction. Importantly, interactions do not necessarily cause detrimental damping but can give rise to topological magnons with exceptionally long lifetimes. We identify two mechanisms of interaction-induced topological phase transitions-one driven by an external field, the other by temperature-and show that they cause unconventional sign reversals of transverse transport signals, in particular, of the thermal Hall conductivity. We identify candidate materials where this many-body mechanism is expected to occur, such as the metal-organic kagome-lattice magnet Cu(1,3-benzenedicarboxylate), the van der Waals honeycomb-lattice magnet CrI3, and the multiferroic kamiokite (Fe2Mo3O8). Our results demonstrate that particle-number-nonconserving many-body interactions play an important role in generating nontrivial single-particle topology.
Publisher American Physical Society
ISSN/ISBN 2160-3308
edoc-URL https://edoc.unibas.ch/86407/
Full Text on edoc Available
Digital Object Identifier DOI 10.1103/PhysRevX.11.021061
ISI-Number 000664623900001
Document type (ISI) Article
 
   

MCSS v5.8 PRO. 0.351 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
05/05/2024