Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Enantiomeric Separation of Semiconducting Single-Walled Carbon Nanotubes by Acid Cleavable Chiral Polyfluorene
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4634302
Author(s) Xu, Liang; Valasek, Michal; Hennrich, Frank; Sedghamiz, Elaheh; Penaloza-Amion, Montserrat; Häussinger, Daniel; Wenzel, Wolfgang; Kappes, Manfred M.; Mayor, Marcel
Author(s) at UniBasel Mayor, Marcel
Häussinger, Daniel
Year 2021
Title Enantiomeric Separation of Semiconducting Single-Walled Carbon Nanotubes by Acid Cleavable Chiral Polyfluorene
Journal ACS Nano
Volume 15
Number 3
Pages / Article-Number 4699-4709
Abstract Helical wrapping by conjugated polymer has been demonstrated as a powerful tool for the sorting of single-walled carbon nanotubes (SWCNTs) according to their electronic type, chiral index, and even handedness. However, a method of one-step extraction of left-handed (M) and right-handed (P) semiconducting SWCNTs (s-SWCNTs) with subsequent cleavage of the polymer has not yet been published. In this work, we designed and synthesized one pair of acid cleavable polyfluorenes with defined chirality for handedness separation of s-SWCNTs from as-produced nanotubes. Each monomer contains a chiral center on the fluorene backbone in the 9-position, and the amino and carbonyl groups in the 2- and 7-positions maintain the head-to-tail regioselective polymerization resulting in polyimines with strictly all-(R) or all-(S) configuration. The obtained chiral polymers exhibit a strong recognition ability toward left- or right-handed s-SWCNTs from commercially available CoMoCAT SWCNTs with a sorting process requiring only bath sonication and centrifugation. Interestingly, the remaining polymer on each single nanotube, which helps to prevent aggregation, does not interfere with the circular dichroism signals from the nanotube at all. Therefore, we observed all four interband transition peaks (E11, E22, E33, E44) in the circular dichroism (CD) spectra of the still wrapped optically enriched left-handed and right-handed (6,5) SWCNTs in toluene. Binding energies obtained from molecular dynamics simulations were consistent with our experimental results and showed a significant preference for one specific handedness from each chiral polymer. Moreover, the imine bonds along the polymer chains enable the release of the nanotubes upon acid treatment. After s-SWNT separation, the polymer can be decomposed into monomers and be cleanly removed under mild acidic conditions, yielding dispersant-free handedness sorted s-SWNTs. The monomers can be almost quantitatively recovered to resynthesize the chiral polymer. This approach enables high selective isolation of polymer-free s-SWNT enantiomers for their further applications in carbon nanotube (CNT) devices.
Publisher American Chemical Society
ISSN/ISBN 1936-0851 ; 1936-086X
URL https://doi.org/10.1021/acsnano.0c09235
edoc-URL https://edoc.unibas.ch/85431/
Full Text on edoc No
Digital Object Identifier DOI 10.1021/acsnano.0c09235
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/33626282
ISI-Number 000634569100083
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.331 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
29/03/2024