Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Efficient integration of transmembrane domains depends on the folding properties of the upstream sequences
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4624946
Author(s) Janoschke, Marco; Zimmermann, Mirjam; Brunauer, Anna; Humbel, Raffael; Junne, Tina; Spiess, Martin
Author(s) at UniBasel Spiess, Martin
Year 2021
Title Efficient integration of transmembrane domains depends on the folding properties of the upstream sequences
Journal Proceedings of the National Academy of Sciences of the United States of America
Volume 118
Number 33
Pages / Article-Number e2102675118
Keywords Sec61 translocon; membrane proteins; molecular chaperones; protein folding; topogenesis
Abstract The topology of most membrane proteins is defined by the successive integration of α-helical transmembrane domains at the Sec61 translocon. The translocon provides a pore for the transfer of polypeptide segments across the membrane while giving them lateral access to the lipid. For each polypeptide segment of ∼20 residues, the combined hydrophobicities of its constituent amino acids were previously shown to define the extent of membrane integration. Here, we discovered that different sequences preceding a potential transmembrane domain substantially affect its hydrophobicity requirement for integration. Rapidly folding domains, sequences that are intrinsically disordered or very short or capable of binding chaperones with high affinity, allow for efficient transmembrane integration with low-hydrophobicity thresholds for both orientations in the membrane. In contrast, long protein fragments, folding-deficient mutant domains, and artificial sequences not binding chaperones interfered with membrane integration, requiring higher hydrophobicity. We propose that the latter sequences, as they compact on their hydrophobic residues, partially folded but unable to reach a native state, expose hydrophobic surfaces that compete with the translocon for the emerging transmembrane segment, reducing integration efficiency. The results suggest that rapid folding or strong chaperone binding is required for efficient transmembrane integration.
Publisher National Academy of Sciences
ISSN/ISBN 0027-8424 ; 1091-6490
edoc-URL https://edoc.unibas.ch/84368/
Full Text on edoc No
Digital Object Identifier DOI 10.1073/pnas.2102675118
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/34373330
ISI-Number WOS:000687404200025
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.356 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
05/05/2024