Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

A Multipurpose First-in-Human Study With the Novel CXCR7 Antagonist ACT-1004-1239 Using CXCL12 Plasma Concentrations as Target Engagement Biomarker
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
ID 4622191
Author(s) Huynh, Christine; Henrich, Andrea; Strasser, Daniel S.; Boof, Marie-Laure; Al-Ibrahim, Mohamed; Meyer Zu Schwabedissen, Henriette E.; Dingemanse, Jasper; Ufer, Mike
Author(s) at UniBasel Meyer zu Schwabedissen, Henriette
Huynh, Christine
Year 2021
Title A Multipurpose First-in-Human Study With the Novel CXCR7 Antagonist ACT-1004-1239 Using CXCL12 Plasma Concentrations as Target Engagement Biomarker
Journal Clinical Pharmacology and Therapeutics
Volume 109
Number 6
Pages / Article-Number 1648-1659
Abstract The C-X-C chemokine receptor 7 (CXCR7) has evolved as a promising, druggable target mainly in the immunology and oncology fields modulating plasma concentrations of its ligands CXCL11 and CXCL12 through receptor-mediated internalization. This "scavenging" activity creates concentration gradients of these ligands between blood vessels and tissues that drive directional cell migration. This randomized, double-blind, placebo-controlled first-in-human study assessed the safety, tolerability, pharmacokinetics, and pharmacodynamics of ACT-1004-1239, a first-in-class drug candidate small-molecule CXCR7 antagonist. Food effect and absolute bioavailability assessments were also integrated in this multipurpose study. Healthy male subjects received single ascending oral doses of ACT-1004-1239 (n = 36) or placebo (n = 12). At each of six dose levels (1-200 mg), repeated blood sampling was done over 144 hours for pharmacokinetic/pharmacodynamic assessments using CXCL11 and CXCL12 as biomarkers of target engagement. ACT-1004-1239 was safe and well tolerated up to the highest tested dose of 200 mg. CXCL12 plasma concentrations dose-dependently increased and more than doubled compared with baseline, indicating target engagement, whereas CXCL11 concentrations remained unchanged. An indirect-response pharmacokinetic/pharmacodynamic model well described the relationship between ACT-1004-1239 and CXCL12 concentrations across the full dose range, supporting once-daily dosing for future clinical studies. At doses ≥ 10 mg, time to reach maximum plasma concentration ranged from 1.3 to 3.0 hours and terminal elimination half-life from 17.8 to 23.6 hours. The exposure increase across the dose range was essentially dose-proportional and no relevant food effect on pharmacokinetics was determined. The absolute bioavailability was 53.0% based on radioactivity data after oral vs. intravenous; 14; C-radiolabeled microtracer administration of ACT-1004-1239. Overall, these comprehensive data support further clinical development of ACT-1004-1239.
Publisher Wiley
ISSN/ISBN 0009-9236 ; 1532-6535
Full Text on edoc No
Digital Object Identifier DOI 10.1002/cpt.2154
PubMed ID
ISI-Number WOS:000617932000001
Document type (ISI) Article

MCSS v5.8 PRO. 0.352 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |