Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
High force catch bond mechanism of bacterial adhesion in the human gut
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4611316
Author(s) Liu, Zhaowei; Liu, Haipei; Vera, Andres M.; Bernardi, Rafael C.; Tinnefeld, Philip; Nash, Michael A.
Author(s) at UniBasel Nash, Michael
Year 2020
Title High force catch bond mechanism of bacterial adhesion in the human gut
Journal Nature Communications
Volume 11
Number 1
Pages / Article-Number 4321
Mesh terms Science & TechnologyLife Sciences & BiomedicineTechnologyPhysical SciencesMICROBIOLOGYBIOCHEMISTRY MOLECULAR BIOLOGYGASTROENTEROLOGY HEPATOLOGYGENETICS HEREDITYCOMPUTER SCIENCE INTERDISCIPLINARY APPLICATIONSMATHEMATICSPHYSICS MULTIDISCIPLINARYBIOPHYSICSMicrobiologyBiochemistry & Molecular BiologyGastroenterology & HepatologyGenetics & HeredityComputer ScienceMathematicsPhysicsBiophysics
Abstract Bacterial colonization of the human intestine requires firm adhesion of bacteria to insoluble substrates under hydrodynamic flow. Here we report the molecular mechanism behind an ultrastable protein complex responsible for resisting shear forces and adhering bacteria to cellulose fibers in the human gut. Using single-molecule force spectroscopy (SMFS), single-molecule FRET (smFRET), and molecular dynamics (MD) simulations, we resolve two binding modes and three unbinding reaction pathways of a mechanically ultrastable R. champanellensis (Rc) Dockerin:Cohesin (Doc:Coh) complex. The complex assembles in two discrete binding modes with significantly different mechanical properties, with one breaking at ~500 pN and the other at ~200 pN at loading rates from 1-100 nN s-1. A neighboring X-module domain allosterically regulates the binding interaction and inhibits one of the low-force pathways at high loading rates, giving rise to a catch bonding mechanism that manifests under force ramp protocols. Multi-state Monte Carlo simulations show strong agreement with experimental results, validating the proposed kinetic scheme. These results explain mechanistically how gut microbes regulate cell adhesion strength at high shear stress through intricate molecular mechanisms including dual-binding modes, mechanical allostery and catch bonds.
Publisher Nature Publishing Group
ISSN/ISBN 2041-1723
edoc-URL https://edoc.unibas.ch/80292/
Full Text on edoc Available
Digital Object Identifier DOI 10.1038/s41467-020-18063-x
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/32859904
ISI-Number 000607079100006
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.538 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
14/05/2024