Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Structure of a proton-dependent lipid transporter involved in lipoteichoic acids biosynthesis
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4597429
Author(s) Zhang, Bing; Liu, Xue; Lambert, Elisabeth; Mas, Guillaume; Hiller, Sebastian; Veening, Jan-Willem; Perez, Camilo
Author(s) at UniBasel Zhang, Bing
Lambert, Elisabeth
Hiller, Sebastian
Mas, Guillaume
Perez, Camilo
Year 2020
Title Structure of a proton-dependent lipid transporter involved in lipoteichoic acids biosynthesis
Journal Nature Structural and Molecular Biology
Volume 27
Number 6
Pages / Article-Number 561-569
Keywords cell wall, bacteria pathogens, transport, membrane proteins
Mesh terms Bacterial Proteins, metabolism; Carrier Proteins, metabolism; Crystallography, X-Ray; Diglycerides, chemistry; Disaccharides, chemistry; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Lipopolysaccharides, biosynthesis; Magnetic Resonance Spectroscopy; Mutation; Protein Conformation; Protons; Staphylococcus aureus, physiology; Stress, Physiological; Teichoic Acids, biosynthesis
Abstract Lipoteichoic acids (LTAs) are essential cell-wall components in Gram-positive bacteria, including the human pathogen Staphylococcus aureus, contributing to cell adhesion, cell division and antibiotic resistance. Genetic evidence has suggested that LtaA is the flippase that mediates the translocation of the lipid-linked disaccharide that anchors LTA to the cell membrane, a rate-limiting step in S. aureus LTA biogenesis. Here, we present the structure of LtaA, describe its flipping mechanism and show its functional relevance for S. aureus fitness. We demonstrate that LtaA is a proton-coupled antiporter flippase that contributes to S. aureus survival under physiological acidic conditions. Our results provide foundations for the development of new strategies to counteract S. aureus infections.
Publisher Nature Publishing Group
ISSN/ISBN 1545-9993 ; 1545-9985
edoc-URL https://edoc.unibas.ch/76568/
Full Text on edoc Restricted
Digital Object Identifier DOI 10.1038/s41594-020-0425-5
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/32367070
ISI-Number WOS:000530278100004
Document type (ISI) Journal Article
Top-publication of... Perez, Camilo
 
   

MCSS v5.8 PRO. 0.384 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
09/05/2024