Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Inherent asymmetry of the structure of F1‐ATPase from bovine heart mitochondria at 6.5 A resolution
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4531117
Author(s) Abrahams, J. P.; Lutter, R.; Todd, R. J.; Van Raaij, M. J.; Leslie, A. G. W.; Walker, J. E.
Author(s) at UniBasel Abrahams, Jan Pieter
Year 1993
Title Inherent asymmetry of the structure of F1‐ATPase from bovine heart mitochondria at 6.5 A resolution
Journal The EMBO journal
Volume 12
Number 5
Pages / Article-Number 1775-1780
Keywords BOVINE HEART MITOCHONDRIA; F1-ATPASE; PROTEIN CRYSTALLOGRAPHY
Mesh terms Science & TechnologyLife Sciences & BiomedicineBiochemistry & Molecular BiologyCell BiologyBiochemistry & Molecular BiologyCell Biology
Abstract ATP synthase, the assembly which makes ATP in mitochondria, chloroplasts and bacteria, uses transmembrane proton gradients generated by respiration or photosynthesis to drive the phosphorylation of ADP. Its membrane domain is joined by a slender stalk to a peripheral catalytic domain, F1-ATPase. This domain is made of five subunits with stoichiometries of 3alpha : 3beta : 1gamma : 1delta : 1epsilon, and in bovine mitochondria has a molecular mass of 371 000. We have determined the 3-dimensional structure of bovine mitochondrial Fl-ATPase to 6.5 angstrom resolution by X-ray crystallography. It is an approximately spherical globule 110 angstrom in diameter, on a 40 angstrom stem which contains two alpha-helices in a coiled-coil. This stem is presumed to be part of the stalk that connects F1 with the membrane domain in the intact ATP synthase. A pit next to the stem penetrates approximately 35 angstrom into the F1 particle. The stem and the pit are two examples of the many asymmetric features of the structure. The central element in the asymmetry is the longer of the two alpha-helices in the stem, which extends for 90 angstrom through the centre of the assembly and emerges on top into a dimple 15 angstrom deep. Features with threefold and sixfold symmetry, presumed to be parts of homologous alpha and beta subunits, are arranged around the central rod and pit, but the overall structure is asymmetric. The central helix provides a possible mechanism for transmission of conformational changes induced by the proton gradient from the stalk to the catalytic sites of the enzyme.
Publisher EMBO Press
ISSN/ISBN 0261-4189 ; 1460-2075
edoc-URL https://edoc.unibas.ch/76015/
Full Text on edoc No
Digital Object Identifier DOI 10.1002/j.1460-2075.1993.tb05825.x
ISI-Number 1993LC94800005
Document type (ISI) Article
 
   

MCSS v5.8 PRO. 0.603 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
29/04/2024