Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
2ANT: The 2.6 A Structure Of Antithrombin Indicates A Conformational Change At The Heparin Binding Site
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4531098
Author(s) Skinner, R.; Abrahams, J.-P.; Whisstock, J. C.; Lesk, A. M.; Carrell, R. W.; Wardell, M. R.
Author(s) at UniBasel Abrahams, Jan Pieter
Year 1997
Title 2ANT: The 2.6 A Structure Of Antithrombin Indicates A Conformational Change At The Heparin Binding Site
Journal Worldwide Protein Data Bank
Pages / Article-Number 2ANT
Keywords Serpin
Mesh terms Science & TechnologyLife Sciences & BiomedicineBiochemistry & Molecular BiologyBiochemistry & Molecular Biology
Abstract The crystal structure of a dimeric form of intact antithrombin has been solved to 2.6 A, representing the highest-resolution structure of an active, inhibitory serpin to date. The crystals were grown under microgravity conditions on Space Shuttle mission STS-67. The overall confidence in the structure, determined earlier from lower resolution data, is increased and new insights into the structure-function relationship are gained. Clear and continuous electron density is present for the reactive centre loop region P12 to P14 inserting into the top of the A-beta-sheet. Areas of the extended amino terminus, unique to antithrombin and important in the binding of the glycosaminoglycan heparin, can now be traced further than in the earlier structures. As in the earlier studies, the crystals contain one active and one latent molecule per asymmetric unit. Better definition of the electron density surrounding the D-helix and of the residues implicated in the binding of the heparin pentasaccharide (Arg47, Lys114, Lys125, Arg129) provides an insight into the change of affinity of binding that accompanies the change in conformation. In particular, the observed hydrogen bonding of these residues to the body of the molecule in the latent form explains the mechanism for the release of newly formed antithrombin-protease complexes into the circulation for catabolic removal.
edoc-URL https://edoc.unibas.ch/76001/
Full Text on edoc No
Digital Object Identifier DOI 10.2210/pdb2ant/pdb
ISI-Number 2012138001742015
Document type (ISI) Data set
 
   

MCSS v5.8 PRO. 0.342 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
18/04/2024