Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

Association of adult lung function with accelerated biological aging
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
ID 4529988
Author(s) Rezwan, Faisal I.; Imboden, Medea; Amaral, Andre F. S.; Wielscher, Matthias; Jeong, Ayoung; Triebner, Kai; Real, Francisco Gůmez; Jarvelin, Marjo-Riitta; Jarvis, Deborah; Probst-Hensch, Nicole M.; Holloway, John W.
Author(s) at UniBasel Imboden, Medea
Jeong, Ayoung
Probst Hensch, Nicole
Year 2020
Title Association of adult lung function with accelerated biological aging
Journal Aging
Volume 12
Number 1
Pages / Article-Number 518-542
Keywords DNA methylation; age acceleration; epigenetic clock; lung function; respiratory health
Abstract Lung function, strongly associated with morbidity and mortality, decreases with age. This study examines whether poor adult lung function is associated with age accelerations (AAs). DNA methylation (DNAm) based AAs, lifespan predictors (GrimAge and plasminogen activator inhibitor 1-PAI1) and their related age-adjusted measures were estimated from peripheral blood at two time points (8-to-11 years apart) in adults from two cohorts: SAPALDIA (n=987) and ECRHS (n=509). Within each cohort and stratified by gender (except for estimators from GrimAge and PAI1), AAs were used as predictors in multivariate linear regression with cross-sectional lung function parameters, and in covariate-adjusted mixed linear regression with longitudinal change in lung function and meta-analysed.AAs were found cross-sectionally associated with lower mean FEV1 (Forced Expiratory Volume in one second) (AA-residuals:P-value=4x10; -4; ; Intrinsic Epigenetic AA:P-value=2x10; -4; ) in females at the follow-up time point only, and the same trend was observed for FVC (Forced Vital Capacity). Both lifespan and plasma level predictors were observed strongly associated with lung function decline and the decline was stronger in the follow-up time points (strongest association between FEV1 and DNAmAge GrimAge:P-value=1.25x10; -17; ).This study suggests that DNAm based lifespan and plasma level predictors can be utilised as important factors to assess lung health in adults.
Publisher McGraw-Hill
ISSN/ISBN 0272-3808
Full Text on edoc Available
Digital Object Identifier DOI 10.18632/aging.102639
PubMed ID
Document type (ISI) Journal Article

MCSS v5.8 PRO. 0.390 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |