Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Fourteen months of on-line measurements of the non-refractory submicron aerosol at the Jungfraujoch (3580 m a.s.l.) - chemical composition, origins and organic aerosol sources
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4519772
Author(s) Froehlich, R.; Cubison, M. J.; Slowik, J. G.; Bukowiecki, N.; Canonaco, F.; Croteau, P. L.; Gysel, M.; Henne, S.; Herrmann, E.; Jayne, J. T.; Steinbacher, M.; Worsnop, D. R.; Baltensperger, U.; Prevot, A. S. H.
Author(s) at UniBasel Bukowiecki, Nicolas
Year 2015
Title Fourteen months of on-line measurements of the non-refractory submicron aerosol at the Jungfraujoch (3580 m a.s.l.) - chemical composition, origins and organic aerosol sources
Journal ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 15
Number 19
Pages / Article-Number 11373-11398
Mesh terms Science & TechnologyLife Sciences & BiomedicinePhysical SciencesEnvironmental SciencesMeteorology & Atmospheric SciencesEnvironmental Sciences & EcologyMeteorology & Atmospheric Sciences
Abstract Chemically resolved (organic, nitrate, sulfate, ammonium) data of non-refractory submicron (NR-PM1) aerosol from the first long-term deployment (27 July 2012 to 02 October 2013) of a time-of-flight aerosol chemical speciation monitor (ToF-ACSM) at the Swiss high-altitude site Jungfraujoch (JFJ; 3580 m a.s.l.) are presented. Besides total mass loadings, diurnal variations and relative species contributions during the different meteorological seasons, geographical origin and sources of organic aerosol (OA) are discussed. Backward transport simulations show that the highest (especially sulfate) concentrations of NR-PM1 were measured in air masses advected to the station from regions south of the JFJ, while lowest concentrations were seen from western regions. OA source apportionment for each season was performed using the Source Finder (SoFi) interface for the multilinear engine (ME-2). OA was dominated in all seasons by oxygenated OA (OOA, 71-88 %), with lesser contributions from local tourism-related activities (7-12 %) and hydrocarbon-like OA related to regional vertical transport (3-9 %). In summer the OOA can be separated into a background low-volatility OA (LV-OOA I, possibly associated with long-range transport) and a slightly less oxidised low-volatility OA (LV-OOA II) associated with regional vertical transport. Wood burning-related OA associated with regional transport was detected during the whole winter 2012/2013 and during rare events in summer 2013, in the latter case attributed to small-scale transport for the surrounding valleys. Additionally, the data were divided into periods with free tropospheric (FT) conditions and periods with planetary boundary layer (PBL) influence, enabling the assessment of the composition for each. Most nitrate and part of the OA are injected from the regional PBL, while sulfate is mainly produced in the FT. The south/north gradient of sulfate is also pronounced in FT air masses (sulfate mass fraction from the south: 45 %; from the north: 29 %). Furthermore, a detailed investigation of specific marker fragments of the OA spectra (f(43), f(44), f(55), f(57), f(60)) showed different degrees of ageing depending on season.
Publisher COPERNICUS GESELLSCHAFT MBH
ISSN/ISBN 1680-7316
edoc-URL https://edoc.unibas.ch/73994/
Full Text on edoc No
Digital Object Identifier DOI 10.5194/acp-15-11373-2015
ISI-Number 000362971000028
Document type (ISI) Article
 
   

MCSS v5.8 PRO. 0.343 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
29/03/2024