Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Nodal stability determines signaling range
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4519703
Author(s) Le Good, J. Ann; Joubin, Katherine; Giraldez, Antonio J.; Ben-Haim, Nadav; Beck, Séverine; Chen, Yu; Schier, Alexander F.; Constam, Daniel B.
Author(s) at UniBasel Schier, Alexander
Year 2005
Title Nodal stability determines signaling range
Journal Current Biology
Volume 15
Number 1
Pages / Article-Number 31-6
Mesh terms Amino Acid Sequence; Animals; Autocrine Communication, physiology; Body Patterning, physiology; COS Cells; Cell Line; Cercopithecus aethiops; DNA Primers; Gene Expression; Humans; Immunoblotting; Molecular Sequence Data; Mutagenesis; Nodal Protein; Paracrine Communication, physiology; Protein Structure, Tertiary; Sequence Alignment; Sequence Analysis, DNA; Signal Transduction, physiology; Transfection; Transforming Growth Factor beta, metabolism; Zebrafish
Abstract Secreted TGFbeta proteins of the Nodal family pattern the vertebrate body axes and induce mesoderm and endoderm . Nodal proteins can act as morphogens , but the mechanisms regulating their activity and signaling range are poorly understood. In particular, it has been unclear how inefficient processing or rapid turnover of the Nodal protein influences autocrine and paracrine signaling properties . Here, we evaluate the role of Nodal processing and stability in tissue culture and zebrafish embryos. Removal of the pro domain potentiates autocrine signaling but reduces Nodal stability and signaling range. Insertion of an N-glycosylation site present in several related TGFbeta proteins increases the stability of mature Nodal. The stabilized form of Nodal acts at a longer range than the wild-type form. These results suggest that increased proteolytic maturation of Nodal potentiates autocrine signaling, whereas increased Nodal stability extends paracrine signaling.
Publisher Cell Press
ISSN/ISBN 0960-9822 ; 1879-0445
edoc-URL https://edoc.unibas.ch/74876/
Full Text on edoc No
Digital Object Identifier DOI 10.1016/j.cub.2004.12.062
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/15649361
ISI-Number WOS:000226715000021
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.435 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
03/05/2024