Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Pulsating Reverse Detonation Models of Type Ia Supernovae. II. Explosion
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4496125
Author(s) Bravo, Eduardo; Garcia-Senz, Domingo; Cabezon, Ruben M.; Dominguez, Inmaculada
Author(s) at UniBasel Cabezon, Ruben
Year 2009
Title Pulsating Reverse Detonation Models of Type Ia Supernovae. II. Explosion
Journal Astrophysical Journal
Volume 695
Number 2
Pages / Article-Number 1257-1272
Keywords hydrodynamics, nuclear reactions, nucleosynthesis, abundances, supernovae: general
Abstract Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf (WD). However, all attempts to find a convincing ignition mechanism based on a delayed detonation in a destabilized, expanding, white dwarf have been elusive so far. One of the possibilities that has been invoked is that an inefficient deflagration leads to pulsation of a Chandrasekhar-mass WD, followed by formation of an accretion shock that confines a carbon-oxygen rich core, while transforming the kinetic energy of the collapsing halo into thermal energy of the core, until an inward moving detonation is formed. This chain of events has been termed Pulsating Reverse Detonation (PRD). In this work, we present three-dimensional numerical simulations of PRD models from the time of detonation initiation up to homologous expansion. Different models characterized by the amount of mass burned during the deflagration phase, M  defl , give explosions spanning a range of kinetic energies, K ~ (1.0-1.2) × 10 51 erg, and  56 Ni masses, M( 56 Ni) ~ 0.6-0.8 M sun , which are compatible with what is expected for typical Type Ia supernovae. Spectra and light curves of angle-averaged spherically symmetric versions of the PRD models are discussed. Type Ia supernova spectra pose the most stringent requirements on PRD models.
Publisher IOP Publishing
ISSN/ISBN 0004-637X ; 1538-4357
URL http://iopscience.iop.org/article/10.1088/0004-637X/695/2/1257/pdf
edoc-URL https://edoc.unibas.ch/68727/
Full Text on edoc No
Digital Object Identifier DOI 10.1088/0004-637X/695/2/1257
ISI-Number 000265018300043
Document type (ISI) Article
 
   

MCSS v5.8 PRO. 0.324 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
09/05/2024