Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
9000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4488172
Author(s) Heiri, Oliver; Lotter, André F.
Author(s) at UniBasel Heiri, Oliver
Year 2003
Title 9000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna
Journal Journal of Paleolimnology
Volume 30
Number 3
Pages / Article-Number 273-289
Keywords subfossil Chironomidae; Holocene; Alpine lake ecosystem; sensitivity; human impact; climate; anoxia
Abstract Subfossil chironomid analysis was applied to a sediment core from Sagistalsee, a small lake at present-day treeline elevation in the Swiss Alps. During the whole 9000-year stratigraphy the chironomid fauna was dominated by taxa typical of alpine lakes. Major faunistic trends were caused by changes in accumulation rates of three taxa, namely Procladius, Stictochironomus, and Tanytarsus lugens-type. In the early Holocene Procladius was the dominant taxon. In younger samples, Stictochironomus tended to have as high or higher abundances and both taxa showed an increase in accumulation rates. A possible cause of this succession is the decrease of lake-water depth due to infilling of the lake basin and changes in associated limnological parameters. The immigration of Picea ( spruce) at ca. 6500 cal. C-14 yrs BP and the resulting denser woodlands in the lake's catchment may have promoted this trend. During three phases, from ca. 70 - 1450, 1900 - 2350, and 3500 - 3950 cal. BP, remains of Procladius, Stictochironomus, and Tanytarsus lugens-type are absent from the lake sediment, whereas other typical lake taxa and stream chironomids show no change in accumulation rate. Together with sediment chemistry data, this suggests that increased oxygen deficits in the lake's bottom water during these intervals caused the elimination of chironomids living in the deepest part of the lake. All three periods coincide with increased human activity in the catchment, as deduced from palaeobotanical evidence. Therefore, enhanced nutrient loading of the lake due to the presence of humans and their livestock in the catchment is the most likely cause of the increased anoxia. The chironomid fauna reacted the same way to intensive pasturing during the last ca. 1500 years as to Bronze Age clear-cutting and more moderate pasturing during the Bronze, Iron, and Roman Ages, suggesting that alpine lake ecosystems can be extremely sensitive to human activity in the catchment. On the other hand, the chironomid assemblages show a considerable amount of resilience to human disturbance, as the chironomid fauna reverted to the pre-impact stage after the first two periods of human activity. In recent years, even though pasturing decreased again, the chironomid fauna has only partly recovered. This is possibly due to other human-induced changes in the lake ecosystem, e. g., the stocking of the lake with fish. The chironomid stratigraphy is difficult to interpret climatologically as the strongest changes in chironomid-inferred temperatures coincide with periods of intensive human activity in the catchment.
Publisher Springer
ISSN/ISBN 0921-2728 ; 1573-0417
edoc-URL https://edoc.unibas.ch/67709/
Full Text on edoc No
Digital Object Identifier DOI 10.1023/A:1026036930059
ISI-Number 000185706500003
Document type (ISI) Article
 
   

MCSS v5.8 PRO. 0.351 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
29/03/2024