Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
A new soluble and bioactive polymorph of praziquantel
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4481165
Author(s) Zanolla, Debora; Perissutti, Beatrice; Passerini, Nadia; Chierotti, Michele R.; Hasa, Dritan; Voinovich, Dario; Gigli, Lara; Demitri, Nicola; Geremia, Silvano; Keiser, Jennifer; Cerreia Vioglio, Paolo; Albertini, Beatrice
Author(s) at UniBasel Keiser, Jennifer
Year 2018
Title A new soluble and bioactive polymorph of praziquantel
Journal European Journal of Pharmaceutics and Biopharmaceutics
Volume 127
Pages / Article-Number 19-28
Abstract Praziquantel is the only available drug to treat Schistosomiasis. However, its utilization is limited by many drawbacks, including the high therapeutic dose needed, resulting in large tablets and capsules difficult to be swallowed, especially from pediatric patients. In this study, an alternative option to overcome these disadvantages is proposed: to switch to a novel crystalline polymorph of racemic compound praziquantel. The preparation of the crystalline polymorph was realized via a neat grinding process in a vibrational mill. The new phase (Form B) was chemically identical to the starting material (as proved by HPLC,; 1; H NMR, and polarimetry), but showed different physical properties (as evaluated by SEM, differential scanning calorimetry, thermogravimetry, ATR-FTIR spectroscopy, X-ray powder diffraction, and solid-state NMR). Furthermore, the crystal structure of the new phase was solved from the powder synchrotron X-ray diffraction pattern, resulting in a monoclinic C2/c cell and validated by DFT-D calculation. Moreover the simulated solid-state NMR; 13; C chemical shifts were in excellent agreement with the experimental data. The conversion of original praziquantel into Form B showed to affect positively the water solubility and the intrinsic dissolution rate of praziquantel. Both the in vitro and in vivo activity against Schistosoma mansoni were maintained. Our findings suggest that the new phase, that proved to be physically stable for at least one year, is a promising product for designing a new praziquantel formulation.
Publisher Elsevier
ISSN/ISBN 0939-6411 ; 1873-3441
edoc-URL https://edoc.unibas.ch/64897/
Full Text on edoc No
Digital Object Identifier DOI 10.1016/j.ejpb.2018.01.018
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/29409939
ISI-Number WOS:000433650400003
Document type (ISI) Article
 
   

MCSS v5.8 PRO. 0.330 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
13/05/2024