Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
What contributes to an effective mannose recognition domain?
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 4156329
Author(s) Sager, Christoph P.; Eriş, Deniz; Smieško, Martin; Hevey, Rachel; Ernst, Beat
Author(s) at UniBasel Ernst, Beat
Sager, Christoph
Hevey, Rachel
Eris, Deniz
Smiesko, Martin
Year 2017
Title What contributes to an effective mannose recognition domain?
Journal Beilstein Journal of Organic Chemistry
Volume 13
Pages / Article-Number 2584-2595
Abstract In general, carbohydrate-lectin interactions are characterized by high specificity but also low affinity. The main reason for the low affinities are desolvation costs, due to the numerous hydroxy groups present on the ligand, together with the typically polar surface of the binding sites. Nonetheless, nature has evolved strategies to overcome this hurdle, most prominently in relation to carbohydrate-lectin interactions of the innate immune system but also in bacterial adhesion, a process key for the bacterium's survival. In an effort to better understand the particular characteristics, which contribute to a successful carbohydrate recognition domain, the mannose-binding sites of six C-type lectins and of three bacterial adhesins were analyzed. One important finding is that the high enthalpic penalties caused by desolvation can only be compensated for by the number and quality of hydrogen bonds formed by each of the polar hydroxy groups engaged in the binding process. In addition, since mammalian mannose-binding sites are in general flat and solvent exposed, the half-lives of carbohydrate-lectin complexes are rather short since water molecules can easily access and displace the ligand from the binding site. In contrast, the bacterial lectin FimH benefits from a deep mannose-binding site, leading to a substantial improvement in the off-rate. Together with both a catch-bond mechanism (i.e., improvement of affinity under shear stress) and multivalency, two methods commonly utilized by pathogens, the affinity of the carbohydrate-FimH interaction can be further improved. Including those just described, the various approaches explored by nature to optimize selectivity and affinity of carbohydrate-lectin interactions offer interesting therapeutic perspectives for the development of carbohydrate-based drugs.
Publisher Beilstein-Institut
ISSN/ISBN 1860-5397
edoc-URL http://edoc.unibas.ch/58312/
Full Text on edoc Available
Digital Object Identifier DOI 10.3762/bjoc.13.255
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/29259668
ISI-Number WOS:000417959700001
Document type (ISI) Review
 
   

MCSS v5.8 PRO. 0.344 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
19/04/2024