Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 3886274
Author(s) Calabrese, Silvia; Kohler, Annegret; Niehl, Annette; Veneault-Fourrey, Claire; Boller, Thomas; Courty, Pierre-Emmanuel
Author(s) at UniBasel Boller, Thomas
Year 2017
Title Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation
Journal Plant & Cell Physiology
Volume 58
Number 6
Pages / Article-Number 1003-1017
Mesh terms Gene Expression Profiling; Gene Expression Regulation, Plant, genetics; Mycorrhizae, physiology; Nitrogen, metabolism; Plant Proteins, metabolism; Populus, microbiology; Symbiosis, physiology
Abstract Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, membrane biogenesis and cell structural components were highly abundant. Interestingly, N starvation also led to a general induction of fungal transporters, indicating increased nutrient demand upon N starvation. In non-mycorrhizal P. trichocarpa roots, 1,341 genes were differentially expressed under N starvation. Among the 953 down-regulated genes in N starvation, most were involved in metabolic processes including amino acids, carbohydrate and inorganic ion transport, while the 342 up-regulated genes included many defense-related genes. Mycorrhization led to the up-regulation of 549 genes mainly involved in secondary metabolite biosynthesis and transport; only 24 genes were down-regulated. Mycorrhization specifically induced expression of three ammonium transporters and one phosphate transporter, independently of the N conditions, corroborating the hypothesis that these transporters are important for symbiotic nutrient exchange. In conclusion, our data establish a framework of gene expression in the two symbiotic partners under high-N and low-N conditions.
Publisher Oxford University Press
ISSN/ISBN 0032-0781 ; 1471-9053
edoc-URL http://edoc.unibas.ch/55819/
Full Text on edoc Available
Digital Object Identifier DOI 10.1093/pcp/pcx044
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/28387868
ISI-Number 000404127900004
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.367 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
08/05/2024