Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Clathrin-dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 3676125
Author(s) Mbengue, Malick; Bourdais, Gildas; Gervasi, Fabio; Beck, Martina; Zhou, Ji; Spallek, Thomas; Bartels, Sebastian; Boller, Thomas; Ueda, Takashi; Kuhn, Hannah; Robatzek, Silke
Author(s) at UniBasel Boller, Thomas
Year 2016
Title Clathrin-dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases
Journal Proceedings of the National Academy of Sciences of the United States of America
Volume 113
Number 39
Pages / Article-Number 11034-9
Abstract Sensing of potential pathogenic bacteria is of critical importance for immunity. In plants, this involves plasma membrane-resident pattern recognition receptors, one of which is the FLAGELLIN SENSING 2 (FLS2) receptor kinase. Ligand-activated FLS2 receptors are internalized into endosomes. However, the extent to which these spatiotemporal dynamics are generally present among pattern recognition receptors (PRRs) and their regulation remain elusive. Using live-cell imaging, we show that at least three other receptor kinases associated with plant immunity, PEP RECEPTOR 1/2 (PEPR1/2) and EF-TU RECEPTOR (EFR), internalize in a ligand-specific manner. In all cases, endocytosis requires the coreceptor BRI1-ASSOCIATED KINASE 1 (BAK1), and thus depends on receptor activation status. We also show the internalization of liganded FLS2, suggesting the transport of signaling competent receptors. Trafficking of activated PRRs requires clathrin and converges onto the same endosomal vesicles that are also shared with the hormone receptor BRASSINOSTERIOD INSENSITIVE 1 (BRI1). Importantly, clathrin-dependent endocytosis participates in plant defense against bacterial infection involving FLS2-mediated stomatal closure and callose deposition, but is uncoupled from activation of the flagellin-induced oxidative burst and MAP kinase signaling. In conclusion, immunity mediated by pattern recognition receptors depends on clathrin, a critical component for the endocytosis of signaling competent receptors into a common endosomal pathway.
Publisher National Academy of Sciences
ISSN/ISBN 0027-8424 ; 1091-6490
edoc-URL http://edoc.unibas.ch/45191/
Full Text on edoc No
Digital Object Identifier DOI 10.1073/pnas.1606004113
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/27651493
ISI-Number WOS:000383954700067
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.324 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
16/04/2024