Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Molecular beam deposition of high-permittivity polydimethylsiloxane for nanometer-thin elastomer films in dielectric actuators
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 3509957
Author(s) Weiss, Florian M.; Madsen, Frederikke B.; Topper, Tino; Osmani, Bekim; Leung, Vanessa; Mueller, Bert
Author(s) at UniBasel Osmani, Bekim
Weiss, Florian
Töpper, Tino
Leung, Vanessa
Müller, Bert
Year 2016
Title Molecular beam deposition of high-permittivity polydimethylsiloxane for nanometer-thin elastomer films in dielectric actuators
Journal Materials & Design
Volume 105
Pages / Article-Number 106-113
Abstract To realize low-voltage dielectric elastomer actuators (DEAs) for artificial muscles, a high-permittivity elastomer and a related thin-film deposition technique must be selected. For polydimethylsiloxane, fillers or functionalized crosslinkers have been incorporated into the elastomer to improve dielectric properties. To produce elastomer layers nanometers thin, molecular beam deposition was introduced. We pursue the synthesis of a high-permittivity oligomer, namely a chloropropyl-functional, vinyl-terminated siloxane to be thermally evaporated and subsequent UV curing to form an elastomer. The synthesized oligomer exhibits dielectric permittivity enhanced by 33% and a breakdown increase of 26% with respect to the commercially available oligomer DMS-V05. Films 160 nm thin were fabricated after being evaporated under ultra-high vacuum conditions. Spectroscopic ellipsometery served for film growth monitoring. Using atomic force microscopy, the film surface morphology and mechanics were characterized after growth termination and subsequent curing. The Young's modulus of the elastomer corresponded to (1.8 ± 0.2) MPa and is thus a factor of two lower than that of DMS-V05. Consequently, the properties of the films prepared by the new elastomer can be quantified by the normalized figure of merit, which estimates to 4.6. The presented approach is an essential step toward the realization of low-voltage DEA for medical applications and beyond.
Publisher Elsevier
ISSN/ISBN 0264-1275
edoc-URL http://edoc.unibas.ch/42685/
Full Text on edoc No
Digital Object Identifier DOI 10.1016/j.matdes.2016.05.049
ISI-Number WOS:000378768400013
Document type (ISI) Article
 
   

MCSS v5.8 PRO. 0.349 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
07/05/2024