Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Evolution of intrastratal karst within evaporitic sequences
ConferencePaper (Artikel, die in Tagungsbänden erschienen sind)
 
ID 3395439
Author(s) Zechner, Eric; Zidane, Ali; Huggenberger, Peter; Younes, Anis
Author(s) at UniBasel Huggenberger, Peter
Zechner, Eric
Year 2015
Title Evolution of intrastratal karst within evaporitic sequences
Book title (Conference Proceedings) Geophysical Research Abstracts
Volume 17
Place of Conference Vienna
Year of Conference 2015
Publisher European Geophysical Society
Place of Publication Katlenburg-Lindau
ISSN/ISBN 1029-7006 ; 1607-7962
Abstract The presented study simulates the evolution of an intrastratal halite karst, which is embedded in a sequence of carbonates, marls, anhydrites and gypsum. A numerical model is developed to simulate laminar flow in a subhorizontal void similar to a developing intrastratal karst. The numerical model is based on the laminar steady state Stokes flow equation, and the advection dispersion transport equation coupled with the dissolution equation. The flow equation is solved using the nonconforming Crouzeix-Raviart (CR) finite element approximation for the Stokes equation. For the transport equation, a combination between Discontinuous Galerkin Method and Multipoint Flux Approximation Method is proposed. The numerical effect of the dissolution is considered by using a dynamic mesh variation that increases the size of the mesh based on the amount of dissolved salt. The numerical method is applied to a 2D geological cross section representing Horst and Graben structures bound by normal faults in the Tabular Jura of north-western Switzerland. The model simulates salt dissolution within the geological section and, therefore, also predicts the amount of vertical displacement of the halite−intrastratal karst interface. The interface displacement serves as an indicator of potential subsidence that could occur at the surface above. Simulation results showed that the highest dissolution amount is observed near the hydraulically higher conductive normal fault zones. Therefore, the highest surface subsidence rates are expected above normal fault zones. The temporal and spatial distribution of the simulated dissolution along the 2D cross sections can be qualitatively compared to the shape and subsidence rate of the observed subsidence areas in the same area of the Tabular Jura.
URL http://meetingorganizer.copernicus.org/EGU2015/EGU2015-12048.pdf
edoc-URL http://edoc.unibas.ch/41458/
Full Text on edoc Available
 
   

MCSS v5.8 PRO. 0.367 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
02/05/2024