Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Convergence of soil nitrogen isotopes across global climate gradients
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 3115337
Author(s) Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd
Author(s) at UniBasel Kahmen, Ansgar
Year 2015
Title Convergence of soil nitrogen isotopes across global climate gradients
Journal Scientific Reports
Volume 5
Pages / Article-Number 8280
Abstract

Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8įC, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

Publisher Nature Publishing Group
ISSN/ISBN 2045-2322
edoc-URL http://edoc.unibas.ch/dok/A6381816
Full Text on edoc Available
Digital Object Identifier DOI 10.1038/srep08280
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/25655192
ISI-Number WOS:000348903800001
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.516 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
10/12/2023