Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Acquisition of antibodies against Plasmodium falciparum merozoites and malaria immunity in young children and the influence of age, force of infection, and magnitude of response
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 2834483
Author(s) Stanisic, Danielle I; Fowkes, Freya J I; Koinari, Melanie; Javati, Sarah; Lin, Enmoore; Kiniboro, Benson; Richards, Jack S; Robinson, Leanne J; Schofield, Louis; Kazura, James W; King, Christopher L; Zimmerman, Peter; Felger, Ingrid; Siba, Peter M; Mueller, Ivo; Beeson, James G
Author(s) at UniBasel Felger, Ingrid
Year 2015
Title Acquisition of antibodies against Plasmodium falciparum merozoites and malaria immunity in young children and the influence of age, force of infection, and magnitude of response
Journal Infection and immunity
Volume 83
Number 2
Pages / Article-Number 646-60
Abstract

Individuals in areas of Plasmodium falciparum endemicity develop immunity to malaria after repeated exposure. Knowledge of the acquisition and nature of protective immune responses to P. falciparum is presently limited, particularly for young children. We examined antibodies (IgM, IgG, and IgG subclasses) to merozoite antigens and their relationship to the prospective risk of malaria in children 1 to 4 years of age in a region of malaria endemicity in Papua New Guinea. IgG, IgG1, and IgG3 responses generally increased with age, were higher in children with active infection, and reflected geographic heterogeneity in malaria transmission. Antigenic properties, rather than host factors, appeared to be the main determinant of the type of IgG subclass produced. High antibody levels were not associated with protection from malaria; in contrast, they were typically associated with an increased risk of malaria. Adjustment for malaria exposure, using a novel molecular measure of the force of infection by P. falciparum, accounted for much of the increased risk, suggesting that the antibodies were markers of higher exposure to P. falciparum. Comparisons between antibodies in this cohort of young children and in a longitudinal cohort of older children suggested that the lack of protective association was explained by lower antibody levels among young children and that there is a threshold level of antibodies required for protection from malaria. Our results suggest that in populations with low immunity, such as young children, antibodies to merozoite antigens may act as biomarkers of malaria exposure and that, with increasing exposure and responses of higher magnitude, antibodies may act as biomarkers of protective immunity.

Publisher American Society for Microbiology
ISSN/ISBN 1098-5522
edoc-URL http://edoc.unibas.ch/dok/A6338854
Full Text on edoc No
Digital Object Identifier DOI 10.1128/IAI.02398-14
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/25422270
ISI-Number WOS:000347955700020
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.323 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
20/04/2024