Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
A translocated effector required for bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 2615995
Author(s) Okujava, Rusudan; Guye, Patrick; Lu, Yun-Yueh; Mistl, Claudia; Polus, Florine; Vayssier-Taussat, Muriel; Halin, Cornelia; Rolink, Antonius G.; Dehio, Christoph
Author(s) at UniBasel Dehio, Christoph
Okujava, Rusudan
Lu, Yun-Yueh
Mistl, Claudia
Rolink, Antonius G.
Year 2014
Title A translocated effector required for bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors
Journal PLoS Pathogens
Volume 10
Number 6
Abstract Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps) into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs) infected with a ΔbepE mutant of B. henselae (Bhe) displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID) domain of BepEBhe (BID2.EBhe). Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d.) model for B. tribocorum (Btr) infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we propose that infected dermal dendritic cells may be involved in disseminating Bartonella towards the blood stream in a BepE-dependent manner.
Publisher Public Library of Science
ISSN/ISBN 1553-7366 ; 1553-7374
edoc-URL http://edoc.unibas.ch/dok/A6271986
Full Text on edoc Available
Digital Object Identifier DOI 10.1371/journal.ppat.1004187
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/24945914
ISI-Number WOS:000338197400024
Document type (ISI) Article
 
   

MCSS v5.8 PRO. 0.350 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
25/04/2024