Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 155903
Author(s) Caussinus, Emmanuel; Colombelli, Julien; Affolter, Markus
Author(s) at UniBasel Affolter, Markus
Year 2008
Title Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation
Journal Current biology
Volume 18
Number 22
Pages / Article-Number 1727-34
Keywords Animals; Body Patterning/genetics; *Cell Movement; Drosophila melanogaster/cytology/*embryology/genetics; Elasticity; Morphogenesis/genetics; Trachea/cytology/*embryology
Abstract

BACKGROUND: Branching morphogenesis remodels epithelial tissues into tubular networks. This process is crucial to many organs, from the insect trachea to the vertebrate vasculature. Although Drosophila tracheal development has been well characterized morphologically and genetically, very little is known about the forces involved during morphogenesis. The repertoire of cell behaviors underlying tracheal primary branch remodeling is limited to cell migration, cell-shape changes, and stalk-cell intercalation (SCI), a process in which cells insert in between cells previously in contact with each other. RESULTS: Here, we identify the major forces that contribute to tracheal primary branch remodeling by using genetic and microsurgery experiments. As the tip cells migrate, they elongate the branches and create a tensile stress. This tensile stress triggers SCI, which, in turn, allows the branches to further elongate. CONCLUSIONS: The mechanism that we describe contrasts with "convergent extension by cell intercalation" acting during Drosophila germ band extension (GBE), where cell intercalation is the cause of epithelium elongation. Surprisingly, in tracheal branches, one or two leading cells produce enough mechanical power to intercalate many lagging cells. This may apply to other tubular networks.

Publisher Cell Press
ISSN/ISBN 0960-9822
edoc-URL http://edoc.unibas.ch/dok/A5258899
Full Text on edoc No
Digital Object Identifier DOI 10.1016/j.cub.2008.10.062
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/19026547
ISI-Number WOS:000261244800021
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.357 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
03/05/2024