Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Adipose-Specific Knockout of raptor Results in Lean Mice with Enhanced Mitochondrial Respiration
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 153752
Author(s) Polak, P.; Cybulski, N.; Feige, J. N.; Auwerx, J.; Ruegg, M. A.; Hall, M. N.
Author(s) at UniBasel Hall, Michael N.
Rüegg, Markus A.
Year 2008
Title Adipose-Specific Knockout of raptor Results in Lean Mice with Enhanced Mitochondrial Respiration
Journal Cell Metabolism
Volume 8
Number 5
Pages / Article-Number 399-410
Mesh terms 3T3-L1 Cells; Adaptor Proteins, Signal Transducing; Adipose Tissue, Brown, metabolism; Adipose Tissue, White, physiology; Animals; Carrier Proteins, metabolism; Cell Respiration; Dietary Fats, administration & dosage; Energy Metabolism; Hypercholesterolemia, metabolism; Insulin, physiology; Male; Mechanistic Target of Rapamycin Complex 1; Mice; Mice, Knockout; Mitochondria, physiology; Multiprotein Complexes; Obesity, metabolism; Organ Specificity; Proteins; Regulatory-Associated Protein of mTOR; Sirolimus, pharmacology; TOR Serine-Threonine Kinases; Transcription Factors, metabolism
Abstract raptor is a specific and essential component of mammalian TOR complex 1 (mTORC1), a key regulator of cell growth and metabolism. To investigate a role of adipose mTORC1 in regulation of adipose and whole-body metabolism, we generated mice with an adipose-specific knockout of raptor (raptor(ad-/-)). Compared to control littermates, raptor(ad-/-) mice had substantially less adipose tissue, were protected against diet-induced obesity and hypercholesterolemia, and exhibited improved insulin sensitivity. Leanness was in spite of reduced physical activity and unaffected caloric intake, lipolysis, and absorption of lipids from the food. White adipose tissue of raptor(ad-/-) mice displayed enhanced expression of genes encoding mitochondrial uncoupling proteins characteristic of brown fat. Leanness of the raptor(ad-/-) mice was attributed to elevated energy expenditure due to mitochondrial uncoupling. These results suggest that adipose mTORC1 is a regulator of adipose metabolism and, thereby, controls whole-body energy homeostasis.
Publisher Cell Press
ISSN/ISBN 1550-4131
edoc-URL http://edoc.unibas.ch/dok/A5258374
Full Text on edoc Restricted
Digital Object Identifier DOI 10.1016/j.cmet.2008.09.003
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/19046571
ISI-Number WOS:000260675300007
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.372 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
25/04/2024