Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
Stable and efficient solid-state light-emitting electrochemical cells based on a series of hydrophobic iridium complexes
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 1473627
Author(s) Costa, Ruben D.; Orti, Enrique; Tordera, Daniel; Pertegas, Antonio; Bolink, Henk J.; Graber, Stefan; Housecroft, Catherine E.; Sachno, Ludmila; Neuburger, Markus; Constable, Edwin C.
Author(s) at UniBasel Constable, Edwin Charles
Housecroft, Catherine
Neuburger, Markus
Year 2011
Title Stable and efficient solid-state light-emitting electrochemical cells based on a series of hydrophobic iridium complexes
Journal Advanced Energy Materials
Volume 1
Number 2
Pages / Article-Number 282-290
Abstract Light-emitting electrochemical cells (LECs) based on ionic transition-metal complexes (iTMCs) exhibiting high efficiency, short turn-on time, and long stability have recently been presented. Furthermore, LECs emitting in the full range of the visible spectrum including white light have been reported. However, all these achievements were obtained individually, not simultaneously, using in each case a different iTMC. In this work, device stability is maintained by employing intrinsically stable ionic iridium complexes, while increasing the complex and the device quantum yields for exciton-to-photon conversion. This is done by sequentially modifying the archetype ionic iridium complex [Ir(ppy)(2)(bpy)][PF(6)], where Hppy is 2-phenylpyridine and bpy is 2,2`-bipyridine, with methyl and phenyl groups on the bpy ligand. A full photophysical and theoretical description of a series of four complexes, including the archetype as a reference, is presented and their performance in LECs is characterized. Upon selecting suitable substituents, a twofold increase is obtained in the photoluminescence quantum yield in a solid film. This is reflected in a significant increase in the efficiency over time curve for LECs using this complex.
Publisher Wiley
ISSN/ISBN 1614-6832 ; 1614-6840
edoc-URL http://edoc.unibas.ch/dok/A5848944
Full Text on edoc No
Digital Object Identifier DOI 10.1002/aenm.201000069
ISI-Number 000291726200018
Document type (ISI) Article
 
   

MCSS v5.8 PRO. 0.358 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
01/05/2024