Data Entry: Please note that the research database will be replaced by UNIverse by the end of October 2023. Please enter your data into the system https://universe-intern.unibas.ch. Thanks

Login for users with Unibas email account...

Login for registered users without Unibas email account...

 
A rapid and accurate approach to identify single nucleotide polymorphisms of mitochondrial DNA using MALDI-TOF mass spectrometry
JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)
 
ID 1195644
Author(s) Xiu-Cheng Fan, Alex; Garritsen, Henk S. P.; Tarhouny, Shereen E. L.; Morris, Michael; Hahn, Sinuhe; Holzgreve, Wolfgang; Zhong, Xiao Yan
Author(s) at UniBasel Zhong, Xiao Yan
Hahn, Sinuhe
Year 2008
Title A rapid and accurate approach to identify single nucleotide polymorphisms of mitochondrial DNA using MALDI-TOF mass spectrometry
Journal Clinical Chemistry and Laboratory Medicine
Volume 46
Number 3
Pages / Article-Number 299-305
Abstract BACKGROUND: Single nucleotide polymorphisms (SNPs) of mitochondrial DNA (mtDNA) are involved in physiological and pathological conditions. We developed a rapid, accurate, highly sensitive and high-throughput approach with low cost to identify mtDNA SNPs. METHODS: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to detect 18 SNPs of mtDNA by uniplex and multiplex assays. The sensitivity and specificity of the MALDI-TOF MS were evaluated. The accuracy of the approach was validated by the comparison of using the robust sequencing analysis. RESULTS: The detection limit achieved with the assays corresponded to the identification of five-genome equivalence of mtDNA per reaction after first round PCR amplification. The testing system enabled the discrimination of as little as 5% of mtDNA polymorphism in the predominating background of mtDNA not containing the SNP. No false positive and false negative results were obtained using the uniplex and multiplex MALDI-TOF MS assays for the analysis of the 18 SNPs compared with those obtained by sequencing analysis. CONCLUSIONS: Possible fields which could benefit from this powerful and sensitive tool include forensic medicine, tracing of matrilineage, transplantation immunology, transfusion medicine, the diagnosis of mtDNA mutation related disorders, and the research regarding aging, apoptosis and carcinogenesis based on physiologic and pathogenic alterations of mtDNA for the analysis of large-scale samples, multiple SNPs or rare mtDNA.
Publisher De Gruyter
ISSN/ISBN 1434-6621 ; 1437-4331
edoc-URL http://edoc.unibas.ch/dok/A6005826
Full Text on edoc Available
Digital Object Identifier DOI 10.1515/CCLM.2008.071
PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/18254712
Document type (ISI) Journal Article
 
   

MCSS v5.8 PRO. 0.348 sec, queries - 0.000 sec ©Universität Basel  |  Impressum   |    
25/04/2024