

Research Project

Modeling multi-layer large-scale data to decipher the translational regulatory code of cellular functions

Third-party funded project

Project title Modeling multi-layer large-scale data to decipher the translational regulatory code of cellular functions

Principal Investigator(s) Zavolan, Mihaela;

Project Members Ataman, Meric ; Schlusser, Niels ;

Organisation / Research unit

Departement Biozentrum / Bioinformatics (Zavolan)

Department

Departement Biozentrum / Bioinformatics (Zavolan)

Project start 01.10.2021 Probable end 30.09.2025

Status Active

The production of proteins from mRNAs (translation) is a central, most energy-consuming activity of cells. Yet most studies of gene expression regulation have focused on other steps of gene expression, particularly the synthesis of mRNAs based on the DNA template. Examples of translational control are known in the context of development or diseases such as cancers. However, it remains poorly understood how mutations in genes encoding translation factors lead to specific diseases or how translation is adjusted when cells respond to perturbations. In this project we will take a systematic approach to understand how translation is regulated in relation to the proliferation rate of cells. We will focus on the liver, a key metabolic organ that rapidly integrates a wide range of signals to synthesize many molecules of key relevance for the entire organism and that also retains the capacity for regeneration. With multi-layer omics data and mathematical models we will determine translation parameters of individual transcripts, identify regulatory elements and predict the impact of translation changes on the metabolic networks of cells. Through the analysis of human hepatocarcinoma samples, our study will elucidate the largely uncharted functional impact of translational control in a system that is highly relevant for human health, providing a blueprint for similar studies of other human cancers.

Keywords translation, proliferation, cancer ,ribosome footprinting, machine learning, TASEP, metabolic networks

Financed by

Swiss National Science Foundation (SNSF)

Add publication

Add documents

Specify cooperation partners

ID	Kreditinhaber	Kooperationspartner	Institution	Laufzeit -	Laufzeit -
				von	bis
4638955	Zavolan, Mi-	Piscuoglio, Salvatore	Visceral Surgery and Pre-		
	haela		cision Medicine Laborato-	01.08.2020	31.12.2025
			ry at the Department of		
			Biomedicine, University of		
			Basel		