

Publication

Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X

JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)

ID 4499932

Author(s) Knaier, Raphael; Höchsmann, Christoph; Infanger, Denis; Hinrichs, Timo; Schmidt-Trucksäss, Arno

Author(s) at UniBasel Hinrichs, Timo ; Knaier, Raphael ; Infanger, Denis ; Höchsmann, Christoph ; Schmidt-Trucksäss, Arno ;

Year 2019

Title Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X

Journal BMC public health

Volume 19

Number 1

Pages / Article-Number 244

Mesh terms Accelerometry, instrumentation; Adult; Algorithms; Exercise; Female; Hip; Humans; Male; Monitoring, Ambulatory, instrumentation; Time Factors; Wearable Electronic Devices, statistics & numerical data; Wrist; Young Adult

Wrist-worn accelerometers are increasingly used in epidemiological studies to record physical activity. The accelerometer data are usually only analyzed if the convention for compliant wear time is met (i.e. \geq 10per day) but the algorithms to detect wear time have been developed based on data from hip-worn devices only and have not been tested in a free-living setting. The aim of this study was to validate the automatic wear time detection algorithms of one of the most frequently used devices in a free-living setting.; Sixty-eight adults wore one ActiGraph GT3X+ accelerometer on the wrist and one on the hip and additionally recorded wear times for each device separately in a diary. Monitoring phase was during three consecutive days in a free-living setting. Wear time was computed by the algorithms of Troiano and Choi and compared to the diary recordings.; Mean wear time was over 1420per day for both devices on all days. Lin's concordance correlation coefficient for the wrist-worn wear time was 0.73 (0.60; 0.82) when comparing the diary with Troiano and 0.78 (0.67; 0.86) when comparing the diary with Choi. For hip-worn devices the respective values were 0.23 (0.13; 0.33) for Troiano and 0.92 (0.88; 0.95) for Choi. Mean and standard deviation values for absolute percentage errors for wrist-worn devices were - 1.3 \$ 8.1% in Troiano and 0.9 \$7.7% in Choi. The respective values for hip-worn devices were - 17.5 \$10% in Troiano and -0.8 \$4.6% in Choi.; Hip worn devices may be preferred due to their higher accuracy in physical activity measurement. Automatic wear-time detection can show high errors in individuals, but on a group level, type I, type II, and total errors are generally low when the Choi algorithm is used. In a real-life setting and participants with a high compliance, the algorithm by Choi is sufficient to distinguish wear time from non-wear time on a group level.

Publisher BMC

ISSN/ISBN 1471-2458

URL https://bmcpublichealth.biomedcentral.com/track/pdf/10.1186/s12889-019-6568 -9 edoc-URL https://edoc.unibas.ch/69778/

Full Text on edoc No;

Digital Object Identifier DOI 10.1186/s12889-019-6568-9

PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/30819148

ISI-Number WOS:000460041100012 Document type (ISI) Journal Article