

Publication

Reciprocal Molecular Interactions between the A β Peptide Linked to Alzheimer's Disease and Insulin Linked to Diabetes Mellitus Type II

JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)

ID 3730010

Author(s) Luo, Jinghui; Wärmländer, Sebastian K. T. S.; Gräslund, Astrid; Abrahams, Jan Pieter Author(s) at UniBasel Abrahams, Jan Pieter ;

Year 2016

Title Reciprocal Molecular Interactions between the $A\beta$ Peptide Linked to Alzheimer's Disease and Insulin Linked to Diabetes Mellitus Type II

Journal ACS Chemical Neuroscience

Volume 7

Number 3

Pages / Article-Number 269-74

Keywords Alzheimer's disease; Amyloid β peptides; cross amyloid interaction; diabetes mellitus type II; fibrillation; insulin

Mesh terms Alzheimer Disease, metabolism; Amyloid beta-Peptides, metabolism; Circular Dichroism; Diabetes Mellitus, Type 2, metabolism; Humans; Insulin, metabolism; Microscopy, Atomic Force

Clinical studies indicate diabetes mellitus type II (DM) doubles the risk that a patient will also develop Alzheimer's disease (AD). DM is caused by insulin resistance and a relative lack of active insulin. AD is characterized by the deposition of amyloid β (A β) peptide fibrils. Prior to fibrillating, A β forms intermediate, prefibrillar oligomers, which are more cytotoxic than the mature A β fibrils. Insulin can also form amyloid fibrils. In vivo studies have revealed that insulin promotes the production of A β , and that soluble A β competes with insulin for the insulin receptor. Here, we report that monomeric insulin interacted with soluble A β and that both molecules reciprocally slowed down the aggregation kinetics of the other. Prefibrillar oligomers of A β that eventually formed in the presence of insulin were less cytotoxic than A β oligomers formed in the absence of insulin. Mature A β fibrils induced fibrillation of soluble insulin, but insulin aggregates did not promote A β fibrillation. Our study indicates that direct molecular interactions between insulin and A β may contribute to the strong link between DM and AD.

Publisher American Chemical Society

ISSN/ISBN 1948-7193

edoc-URL http://edoc.unibas.ch/54056/

Full Text on edoc No;

Digital Object Identifier DOI 10.1021/acschemneuro.5b00325

PubMed ID http://www.ncbi.nlm.nih.gov/pubmed/26785771

Document type (ISI) Journal Article