

Research Project

COSIWAX - Compound Specific Hydrogen Isotope Analyses of Leaf Wax n-Alkanes as a Novel Tool to Assess Plant and Ecosystem Water Relations Across new Spatial and Temporal Scales

Third-party funded project

Project title COSIWAX - Compound Specific Hydrogen Isotope Analyses of Leaf Wax n-Alkanes as a Novel Tool to Assess Plant and Ecosystem Water Relations Across new Spatial and Temporal Scales

Principal Investigator(s) Kahmen, Ansgar;

Project Members Nelson, Daniel;

Organisation / Research unit

Departement Umweltwissenschaften / Physiological Plant Ecology (Kahmen)

Department

Project Website https://botanik.unibas.ch/forschungsgruppen-der-botanik/nachhaltige-landnut zung/projects/cosiwax/

Project start 01.10.2012 Probable end 30.09.2017

Status Completed

Leaf wax n-alkanes are long-chained lipids that are vital components of plant cuticles. What makes leaf wax n-alkanes unique is that their stable hydrogen isotope composition (δ^2 H) contains information on precipitation and plant water relations. In addition, leaf wax n-alkanes are abundant in leaves, soils, sediments and even the atmosphere and can persist with their δ^2 H values over millions of years. With this exceptional combination of properties, leaf wax n-alkanes and their δ^2 H values are now being celebrated as the much-needed ecohydrological proxy. Despite the enormous potential that leaf wax n-alkanes have as ecohydrological proxy, the exact type of hydrological information that is recorded in the δ^2 H values of leaf wax n-alkanes remains still unclear. This is because critical mechanisms that determine the δ^2 H values of leaf wax n-alkanes are not understood.

This project will perform the experimental work that is now needed to resolve the key mechanisms that determine the δ^2 H values leaf wax n-alkanes. These experiments will set the basis to develop a new numerical model that will allow to ultimately test the exact hydrological signal that leaf wax n-alkanes record in their δ^2 H values: Is it a mere hydrological signal reflecting the amount or origin of precipitation or a plant-shaped signal indicating plant water relations such as evapotranspiration? Building on this new model, COSIWAX will set out to test the potential that leaf wax n-alkane δ^2 H values hold as new ecohydrological proxy for ecology and ecosystem sciences. If successful, COSIWAX will establish with this research leaf wax n-alkanes δ^2 H values as an innovative ecohydrological proxy that has extensive possible applications in paleoclimatology, ecology, earth system sciences.

Financed by

Commission of the European Union

Add publication

Add documents

Specify cooperation partners