

Research Project

Picosecond Transient Absorption Setup for Detection of Short-Lived Photoproducts and Excited States in Molecular Systems

Third-party funded project

Project title Picosecond Transient Absorption Setup for Detection of Short-Lived Photoproducts and Excited States in Molecular Systems

Principal Investigator(s) Wenger, Oliver;

Co-Investigator(s) Constable, Edwin Charles; Housecroft, Catherine; Mayor, Marcel; Seebeck, Florian Peter; Ward, Thomas R.;

Organisation / Research unit

Departement Chemie / Anorganische Chemie (Wenger)

Department

Project start 01.01.2015 Probable end 31.12.2015

Status Completed

Many photophysical and photochemical processes which are relevant for light-to-chemical energy conversion occur on very rapid timescales. Time-resolved UV-Vis absorption spectroscopy has become an indispensable tool in modern photochemistry. Several ongoing Ph. D. theses and postdoctoral research projects in the main applicant's group ask for a transient absorption spectrometer with picosecond time resolution and an appropriate laser source. Among these projects are for example the investigation of photoinduced multi-electron transfer reactions in order to spatially separate multiple electrons from multiple holes, which is of key importance for producing chemical fuels with sunlight as energy input (projects 1 and 2). Similarly, picosecond transient absorption spectrosocopy will permit mechanistic studies of photoinduced proton-coupled electron transfer (PCET) reactions which will greatly further our current fundamental understanding of this important class of reactions (project 3). The activation of small inert molecules such as H₂O, CO₂ or N₂ will invariably rely on multi-electron, multi-proton chemistry hence the proposed photochemical studies are important in the greater context of solar energy conversion.

Financed by

Swiss National Science Foundation (SNSF)

Add publication

Add documents

Specify cooperation partners