

Publication

A Tripodal Molecule on a Gold Surface : Orientation-Dependent Coupling and Electronic Properties of the Molecular Legs

JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)

ID 2367915

Author(s) Lukas, Maya; Dössel, Kerrin; Schramm, Alexandrina; Fuhr, Olaf; Stroh, Christophe; Mayor, Marcel; Fink, Karin; v. Löhneysen, Hilbert

Author(s) at UniBasel Mayor, Marcel;

Year 2013

Title A Tripodal Molecule on a Gold Surface: Orientation-Dependent Coupling and Electronic Properties of the Molecular Legs

Journal ACS Nano

Volume 7 Number 7

Pages / Article-Number 6170-6180

Keywords molecular electronics, multiterminal molecule, single-molecule junction, submolecular resolution, scanning tunneling spectroscopy, density functional theory

The realization of molecular electronics demands a detailed knowledge of the correlation between chemical groups and electronic function. It has become obvious during the last years that the conformation of a molecule and its coupling to the connecting electrodes plays a crucial role in its conductance behavior and its electronic function, e.g., as a switch. Knowledge about these relationships is therefore essential for future design of molecular electronic building blocks. We present a new three-dimensional molecule, consisting of three identical molecular wires connected to a headgroup. Due to the well-defined spatial arrangement of the molecule in a nonplanar geometry, it is possible to investigate the conductance behavior of these wires with respect to their position and coupling to the surface electrode with the submolecular resolution of a scanning tunneling microscope. The experimental findings are supported by calculations of the electronic structure and conformation of the molecule on the surface by density functional theory with dispersion corrections.

Publisher American Chemical Society **ISSN/ISBN** 1936-0851; 1936-086X

edoc-URL http://edoc.unibas.ch/dok/A6223584

Full Text on edoc No;

Digital Object Identifier DOI 10.1021/nn4020505

ISI-Number WOS:000322417400062

Document type (ISI) Article