Soluble BAFF levels inversely correlate with peripheral B cell numbers and the expression of BAFF receptors.

JournalArticle (Originalarbeit in einer wissenschaftlichen Zeitschrift)

ID 1196344
Author(s) Kreuzaler, Matthias; Rauch, Melanie; Salzer, Ulrich; Birmelin, Jennifer; Rizzi, Marta; Grimbacher, Bodo; Plebani, Alessandro; Lougaris, Vassilios; Quinti, Isabella; Thon, Vojtech; Litzman, Jiri; Schlesier, Michael; Warnatz, Klaus; Thiel, Jens; Rolink, Antonius G; Eibel, Hermann
Author(s) at UniBasel Rolink, Antonius G.
Year 2012
Title Soluble BAFF levels inversely correlate with peripheral B cell numbers and the expression of BAFF receptors.
Journal Journal of immunology
Volume 188
Number 1
Pages / Article-Number 497-503

The TNF family member protein BAFF/BLyS is essential for B cell survival and plays an important role in regulating class switch recombination as well as in the selection of autoreactive B cells. In humans, increased concentrations of soluble BAFF are found in different pathological conditions, which may be as diverse as autoimmune diseases, B cell malignancies, and primary Ab deficiencies (PAD). Because the mechanisms that regulate BAFF levels are not well understood, we newly developed a set of mAbs against human BAFF to study the parameters that determine the concentrations of soluble BAFF in circulation. Patients with PAD, including severe functional B cell defects such as BTK, BAFF-R, or TACI deficiency, were found to have higher BAFF levels than asplenic individuals, patients after anti-CD20 B cell depletion, chronic lymphocytic leukemia patients, or healthy donors. In a comparable manner, mice constitutively expressing human BAFF were found to have higher concentrations of BAFF in the absence than in the presence of B cells. Therefore, our data strongly suggest that BAFF steady-state concentrations mainly depend on the number of B cells as well as on the expression of BAFF-binding receptors. Because most patients with PAD have high levels of circulating BAFF, the increase in BAFF concentrations cannot compensate defects in B cell development and function.

Publisher American Assoc. of Immunologists
ISSN/ISBN 0022-1767
edoc-URL http://edoc.unibas.ch/dok/A6006515
Full Text on edoc No;
Digital Object Identifier DOI 10.4049/jimmunol.1102321
ISI-Number WOS:000298628400057
Document type (ISI) Clinical Trial, Journal Article, Multicenter Study